
Data Characteristics and Preliminary

Results from the Atacama B-Mode

Search (ABS)

Katerina Visnjic

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Physics

Adviser: Lyman A. Page

September 2013



c© Copyright by Katerina Visnjic, 2014.

All rights reserved.



Abstract

The Atacama B-Mode Search (ABS) is a 145 GHz polarimeter located at a high

altitude site on Cerro Toco, in the Andes of northern Chile. Having deployed in

early 2012, it is currently in its second year of operation, observing the polarization

of the Cosmic Microwave Background (CMB). It seeks to probe the as yet unde-

tected odd-parity B-modes of the polarization, which would have been created by the

primordial gravitational wave background (GWB) predicted by theories of inflation.

The magnitude of the B-mode signal is characterized by the tensor-to-scalar ratio,

r. ABS features 60 cm cryogenic reflectors in the crossed-Dragone configuration, and

a warm, continuously rotating sapphire half-wave plate to modulate the polarization

of incoming radiation. The focal plane consists of 480 antenna-coupled transition

edge sensor bolometers, arranged in orthogonal pairs for polarization sensitivity, and

coupled to feedhorns in a hexagonal array.

In this thesis we describe the ABS instrument in the state in which it is now

operating, outline the first season of observations, and characterize the data obtained.

Focusing on observations of the primary CMB field during a one month reference

period, we detail the algorithms currently used to select the data suitable for making

maps. This is the first pass at data cuts and provides a conservative estimate for the

sensitivity of ABS to the polarization modes in the sky. We project that with one

year total observation time of the primary CMB field, ABS should be able to detect

the B-mode signal at roughly the level of r = 0.03.
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Chapter 1

Introduction

Questions about the origins of the Universe have fascinated and puzzled humanity for

millennia. The various cosmogonic theories proposed over the years can be found in

mythology, philosophy, and religion, and only in the last few decades has technology

progressed enough to allow us to acquire data and put the various models to the test.

The discovery of the Cosmic Microwave Background (CMB) [30] almost 50 years ago

arguably marks the birth of cosmology as a science. The existence of an isotropic

black body background was predicted over a decade earlier[2], as a consequence of

the idea that the Universe is expanding, this being the radiation emitted when the

Universe used to be denser and hotter. Although the connection between the first

measurement at 3 GHz indicating a ∼ 3 K thermal source, and the relic radiation

was produced almost immediately [13], its black body nature was not fully verified

until 1990 [26, 20], when the Far-InfraRed Absolute Spectrophotometer (FIRAS)

on the Cosmic Background Explorer (COBE) satellite measured the CMB in the

Wien regime, above 150 GHz. The temperature of this black body is now known

to be 2.72548± 0.00057 K[17]. Additionally, the Differential Microwave Radiometers

(DMR), also aboard COBE, gave the first accurate measurement of the anisotropies
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at the 7◦ scale, 16 ± 4 µK, revealing that the Universe is isotropic to one part in

∼ 100, 000[41].

1.1 The Standard Model of Cosmology

In the past decade, increasingly precise measurements of the CMB temperature

anisotropies [7, 10, 32] have culminated in a well-established standard model of cos-

mology, called the ΛCDM model. It assumes a homogeneous and isotropic Universe

with adiabatic, Gaussian fluctuations. It is the simplest model which is in agreement

with all the observations to date, including zero spatial curvature, the large scale

structure formation observations, and the accelerated expansion rate determined from

supernovae observations. Here, Λ represents the cosmological constant, one form of

dark energy, while CDM stands for cold dark matter, which is non-relativistic, dis-

sipationless and collisionless, interacting with other particles only through the weak

force and gravity, and possibly through other interactions no stronger than the weak

force.

The cosmological constant was first introduced by Einstein in his equations of

General Relativity in his quest to construct a static Universe. It permeates all of

space uniformly and acts as a negative pressure, expanding spacetime and counter-

acting the attractive force of gravity. It was discarded in 1927 when the Universe

was discovered to be expanding, until the rate of expansion was observed to be in-

creasing, and a uniform repulsive force was required to explain this counter-intuitive

phenomenon[43]. Unlike dark energy, dark matter is not uniformly distributed, hav-

ing undergone gravitational collapse much the same way as ordinary matter. The

presence of unaccounted for mass in the centers of spiral galaxies was detected from

their rotation curves, which were seen to level off instead of decrease. We now know

that over 80% of the matter in our Universe is dark: according to the ΛCDM model,

2



ordinary matter makes up roughly 5% of the current energy density of our Universe.

Dark matter comprises 23% and the rest, by far the most at 72%, is dark energy.

Given its six parameters (Tab. 1.1), the ΛCDM model successfully describes the evo-

lution of the Universe starting from 10−10 s after the Big Bang, when the energy was

7 TeV, until today. 1

Parameter Description Best-fit Value

Ωbh
2 Baryon density 0.02264± 0.00050

Ωch
2 Cold dark matter density 0.1138± 0.00045

ΩΛ Dark energy density 0.721± 0.025
109∆2

R Amplitude of curvature perturbations 2.41± 0.10
ns Spectral index of density perturbations 0.972± 0.013
τ Reionization optical depth 0.089± 0.014

Table 1.1: Best-fit ΛCDM parameters for a flat Universe from WMAP 9-year data[21].
Here, Ωb,c,Λ denote the fractional density of baryonic matter, cold dark matter, and
dark energy, and the hubble parameter h = 0.700 ± 0.022, explained in more detail
in Section 1.1.2, relates the fractional density to the physical density.

1.1.1 The Oldest Light In The Universe

As the Universe expanded, its temperature and density decreased. Thus the evolution

of the early Universe, up until 0.1 eV, can be separated into periods characterized

by what reactions were allowed to occur (Tab. 1.2). Each period begins when the

temperature drops enough to allow the bound state of a particle which in turn allows

a particular reaction to happen. It ends with a freeze-out, when the reaction rate

drops below the expansion rate. For unstable particles there is an additional time

element, the half-life of the particle.

Before the first second had passed, nucleons and neutrinos had already frozen-out.

At 3 minutes, in a process called Big Bang nucleosynthesis, protons and neutrons

fused to form deuterium and tritium, which in turn fused to form helium-4. By the

17 TeV is the maximum energy that terrestrial accelerators have been able to probe, and marks
the current limit of our knowledge.
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time the energy fell below the point where fusion could occur, at 20 minutes, there

was about three times more hydrogen than helium-4 by mass, and trace amounts of

heavier nuclei. The photons were still strongly interacting via Compton scattering

with the charged matter particles, and the counteracting forces due to gravity and

photon pressure created baryon acoustic oscillations (BAO), or sound waves, in the

plasma, of part in 105[41].

Event Time Energy Redshift

Inflation? ≥ 10−34s ≤ 1015 GeV
Electroweak unification 10−10s 1 TeV
Quark-hadron transition 10−4 s 102 MeV
Nucleon freeze-out 0.01 s 10 MeV
Neutrino freeze-out 1 s 1 MeV
Big bang nucleosynthesis 3 min 0.1 MeV
Matter-radiation equality 104 yrs 1 eV 3,200
Recombination 105 yrs 0.1 eV 1,100
Reionization 108 yrs 25− 6
Large scale structure formation ∼ 6× 108 yrs ∼ 10
Now 14× 109 yrs 1 meV 0

Table 1.2: Timeline of the Universe.

The Universe continued as an oscillating plasma of nuclei and electrons for ∼

380, 000 years until the energy dropped enough for neutral hydrogen to form, a pro-

cess called Recombination. Over a relatively short period of time, all the electrons

combined with protons2, allowing the 3000 K black body spectrum of photons to de-

couple from matter and start free streaming. This decoupling marked the transition

of the Universe from opaque to transparent. Since light travels at a finite speed, an

observer is only able to see as far as his past light cone until decoupling. This looks

like a transparent bubble centered at the observer and bounded by the “surface of

last scattering” which is receding at roughly the speed of light3. The expansion of

the Universe until the present time redshifted the photons to their current tempera-

2The much smaller fraction of heavier atoms were already bound.
3Not accounting for the expansion of Universe.
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ture of 2.7 K. The photons reaching us from the surface of last scattering have been

traveling freely for the past 13.8 billion years, presenting us with a “baby picture” of

the Universe.

1.1.2 Temperature anisotropies

The most general metric describing a homogeneous and isotropic space varying in

time is known as the Friedmann-Robertson-Walker (FRW) metric:

ds2 = dt2 − a(t)

(
r2dr

1−Kr2
+ dΩ2

)
, (1.1)

where K = 0, 1, -1 for a flat, positive and negative spatial geometry, respectively, r

and Ω are spherical coordinates for 3-space, and a(t) is the “scale factor” giving the

physical size of the Universe as a function of time. The convention is to take a0 ≡ 1,

where the subscript 0 henceforth denotes the value today. We define the redshift

z ≡ 1/a − 1 and the expansion rate H ≡ ȧ/a whose current value is known as the

Hubble constant, H0 ≡ 100h km/s/Mpc = 67.3± 1.2 km/s/Mpc[33].

Since the scale factor is the only quantity varying with time, studying the dynamics

of an FRW Universe is reduced to studying the evolution of a(t). Applying Einstein’s

field equations to the FRW metric yields two differential equations:

H2 +
K

a2
=

8πGρ

3
, (1.2)

ρ̇ = −3H(ρ+ p). (1.3)

Equation (1.2) is the Friedmann equation governing the expansion of the Universe

and (1.3) is the energy conservation law as explained below. The first equation gives

the relationship between the energy density ρ and the spatial curvature K. For a flat
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Universe, ρ = ρc ≡ 3H2/8πG. For greater or smaller values of ρ it would be positively

or negatively curved, respectively.

The conservation law relates H to the equation of state, w ≡ p/ρ. For relativistic

matter, non-relativistic matter and dark energy, wR,M,Λ = 1/3, 0, -1, respectively.

Although at any given time all three forms of energy are present, it is revealing to

consider the extreme cases which yield: ρR ∝ a−4, ρM ∝ a−3, and ρΛ ∝ 1. As Figure

1.1 illustrates, this implies that although we are now in a dark energy dominated

Universe, there was a period when it was matter dominated, and before that it was

radiation dominated. In terms of the fractional densities Ω∗ ≡ ρ∗/ρc the Friedmann

equation (1.3) can be simply written as

1 = ΩR + ΩM + ΩΛ + ΩK , (1.4)

where ΩK ≡ −K/a2H2 is called the curvature density. Observations have shown that

the curvature of our Universe is consistent with zero to within 0.5%, so from now on

we will take K=0.

Just as the high level of isotropy of the Universe is revealing, the one part in 105

anisotropies mentioned above are rich with information about the early Universe. To

study the anisotropies it is convenient to decompose the temperature on the surface

of last scattering into real spherical harmonics Y`m(n̂):

∆T (n̂) = T (n̂)− Tmean =
∑
`m

a`mY`m(n̂). (1.5)

Since the mean temperature is already subtracted, the lowest non-zero term is the

dipole term ` = 1, which is dominated by the Doppler effect due to Earth’s motion

relative to the CMB. In other words the CMB defines a rest frame for the Universe and

the Earth’s velocity in it. The coefficients a`m depend on the choice of coordinate

frame, so to get a frame-independent characterization of the CMB we define the
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1.8

Scale factor a

Redshift z

Figure 1.1: Evolution of the energy densities as a function of the scale factor for
a radiation dominated (red solid curve), matter dominated (blue dashed curve) and
dark energy dominated (green dotted curve) Universe. Figure not drawn to scale.

multipole coefficients as the average over all ms for a given `:

C` ≡
1

2`+ 1

∑
m

|a`m|2.

Figure 1.2 shows the power spectrum of the CMB as measured by several modern

experiments. The oscillations in the spectrum represent the state of the baryon

acoustic oscillations at the time of decoupling. A mode starts to oscillate when its

wavelength is twice the size of the horizon, defined as the boundary between causally

connected and not connected regions of spacetime. In other words, it is the size of a

light cone originating at the big bang in the standard model. Smaller angular scales

represent modes that entered the horizon earlier and have been oscillating longer.

The first peak at ` ∼ 100 represents the last mode to have entered the horizon and

reached maximal compression due to gravitational collapse before decoupling, and

thus gives the size of the horizon at decoupling. The second peak represents the

mode that has undergone one half oscillation, at which point the previously under-
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dense regions achieve maximal compression and vice-versa. The third peak represents

the mode which has undergone a full oscillation, and the over-dense regions coincide

with their initial position. Dark matter, which does not feel the photon pressure, does

not oscillate; rather its distribution in the sky remains fixed, and it only undergoes

gravitational collapse. This effect can be seen in the relative amplitudes of the first

few peaks: after half of an acoustic oscillation, the ordinary matter distribution,

which initially coincides with the dark matter, becomes anti-aligned, and after a full

oscillation it coincides again. Thus the even numbered peaks are suppressed and the

odd numbered peaks are amplified.

Figure 1.2: Measurements of the CMB power spectrum. Shown are the spectra from
the 9-year WMAP data [7] at large angular scales, ` < 1000, in blue and from the
Atacama Cosmology Telescope (ACT) [10] and the South Pole Telescope (SPT) [42] at
smaller angular scales in green and red, respectively. The recent Planck measurements
[31] are shown in white go up to ` <∼ 2, 500. Figure courtesy of Mark Halpern.

8



1.2 Inflation

1.2.1 Motivation

The ΛCDM model is consistent will all current data, but does not explain how the

Universe arrived at its initial state of isotropy and flatness with a nearly scale invariant

spectrum of minute anisotropies. In a radiation or matter dominated Universe, such a

state is in unstable equilibrium, which is problematic from a philosophical standpoint.

Inflation was postulated to address this extreme fine-tuning of the initial conditions.

Horizon problem At the time of decoupling, the horizon of an observer was much

smaller than it is today; its angular diameter in our sky is ∼ 1.6◦. In a matter and

radiation dominated Universe, any inhomogeneities on scales larger than a few degrees

would not have been smoothed over, in direct contradiction with the observed degree

of isotropy over the entire sky. The fact that the CMB is so uniform on nominally

causally disconnected scales suggests that our entire visible Universe was at one time

causally connected and in thermal equilibrium. That is, the horizon started out

at least as big as it is now, shrank, and then started expanding in the “normal”

way. This counter-intuitive effect of a shrinking horizon occurs during exponential

expansion.

Figure 1.3 illustrates the horizon problem with a spacetime diagram, with coordi-

nate time t, which is the time as measured by a clock in a comoving reference frame,

rather than the usual conformal time τ ≡
∫

dt/a(t). On the x−axis is the usual

comoving space coordinate x. In this diagram the trajectories of the photons are no

longer straight lines; over time the scale factor, and thus the physical distance between

two coordinates, increases, and it takes light longer in coordinate time to travel from

one point to the other, distorting the traditional light cone into a trumpet shape. The

shape of the light’s trajectory t(x) can be found by doing the coordinate transforma-

tion τ → t of the conformal light cone τ(x) = x. In the case of matter dominated

9



Figure 1.3: “Non-conformal” space-time diagrams, with coordinate time rather than
conformal time on the y-axis. a) The trajectories of a photon between two given
coordinate points in a radiation (red, thick solid line) and matter (blue, dashed)
dominated Universe and during exponential expansion (green, dots). The trajectory
in conformal time is shown for comparison (black, thin solid line). b) The ‘horizon
problem’ illustrated. In a matter- and radiation-dominated Universe the past light
cones of two points on the surface of last scatter do not overlap (blue trajectories).
Exponential expansion during inflation has the effect of stretching out the tails of the
cones, bringing the two points into causal contact (red trajectories).
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expansion,

a ∼ t2/3, so

τ ∼
∫
t−2/3dt ∼ t1/3,

x ∼ τ ∼ t1/3, and

t ∼ x3.

Following a similar procedure for the other two types of expansion yields

radiation domination a(t) ∼ t1/2 ⇒ t ∼ x2

exponential expansion a(t) ∼ et ⇒ t ∼ − log(x0 − x),

where x0 is the coordinate which the light ray asymptotically approaches as the

Universe expands exponentially. The effect that inflation has on the light cone is to

stretch out the tails, expanding our past horizon exponentially in time.

Flatness problem Rewriting the Friedmann equation as ȧ2 = 8
3
πGa2ρ − K,

we see that for a matter and radiation dominated Universe, where a2ρM,R ∼ a−1,

a−2, respectively, the first term dominates over the curvature parameter K = ±1

as a → 0 at early times, and the density approaches the critical density. In other

words, zero curvature is an unstable equilibrium point, and a slight curvature at

early times would grow. The fact that we are within 0.5% of the critical density

now requires that at matter-radiation equality the Universe was within 0.0005% of

the critical density, and even closer before that. Now that we have recently entered

the dark energy epoch and a2ρΛ ∼ a2, over time our Universe will tend to get more

flat. The exponential expansion during inflation would have had a similar effect as

the exponential expansion due to dark energy, wiping out any initial curvature and

bringing the Universe to the flatness required for the ΛCDM initial conditions.
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1.2.2 Polarization

How does one test a theory about the first 10−34 seconds when the oldest light in

the Universe was emitted almost half a million years later? Inflation posits that the

exponential expansion would have stretched quantum fluctuations into macroscopic

perturbations in the spacetime metric. These metric perturbations can be decom-

posed into scalar, vector and tensor modes. The vector modes represent peculiar

velocities and vortices, which would have decayed with the expansion of the Universe

and so would not have a measurable power spectrum. The scalar and tensor modes on

the other hand would have maintained their amplitude, and on re-entering the horizon

would have started to propagate as sound and gravitational waves respectively.

The prediction of a nearly scale-invariant spectrum of scalar perturbations is in line

with the observations of the temperature anisotropies of the CMB, however there is no

evidence as of yet for the existence of tensor modes. Gravitational waves propagating

through the Universe would have left their signature on the CMB both as temperature

anisotropies, in particular at low `, and as a polarization tensor field. The strength

of the tensor field is quantified by the tensor-to-scalar ratio, r, defined as the ratio

between the amplitudes of the tensor and scalar fluctuations at the quadrupole, at

` = 2. The value of r depends only on the characteristic energy scale at which inflation

occurred, and in the most straightforward single-field inflationary models that energy

scale goes as r1/4(2 × 1016 GeV)[25]. The current upper bound on r is based on the

temperature anisotropies. Improving this limit requires a direct measurement of the

polarization.

The CMB tensor field can be decomposed into two fields invariant under rotation,

one curl-free and one divergence-less, termed E and B respectively4 [40]. Examples of

pure E- and B-modes can be seen in Figure 1.4 on the left. E is invariant under parity

transformations whereas B changes sign, making it a pseudoscalar field. Temperature

4In analogy with the curl-free electric and divergence-less magnetic fields.
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Figure 1.4: Left, pure scalar curl-free E-modes and pseudoscalar divergence-less B-
modes. The E- and B-modes are not measured locally; they are Fourier modes and
for pure decomposition require the tensor field to be measured over the entire sky.
Finite sky coverage and pixelization introduce some ambiguity in the decomposition
[8]. Right, illustration of how a temperature quadrupole anisotropy can produce a
net linear polarization. Figure from [46].

quadrupole anisotropies can also produce a net polarization due to the anisotropic

Thomson scattering from the hot and cold regions (Fig. 1.4 right). However scalar

perturbations can only source the scalar E-modes making B-modes the purest probe

of the primordial gravitational wave background.

The upper bound on r based on measurements of the CMB polarization alone is

currently at 0.12 [33]. Improving this limit by approximately an order of magnitude

would allow us to probe energies below the grand unification energy of 1016 GeV.

A measurement of B-modes at this level would not only be compelling evidence

for inflation, it would also be the first detection, direct or indirect, of primordial

gravitational waves, confirming their existence. Furthermore, it would give insight

into fundamental physics at energy scales which are 1013 times greater than we have

been able to probe with the most powerful particle accelerators on Earth. If the B-
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Figure 1.5: Measurements as of 2012 of the EE power spectrum, and upper limits
for the BB power spectrum. The predicted BB spectrum for r = 0.1 is shown for
reference. It is dominated by the inflationary component at large scales, and by
gravitational lensing of E-modes at small scales. For r <∼ 0.01 the inflationary
component would be too small to be distinguishable from the gravitational lensing
component even at its peak at ` ∼ 100, without statistical analysis and foreground
removal. Figure from [35].

modes remain elusive, an upper bound on r at this level would significantly constrain

the many models of the birth of the Universe[5].

1.3 The Atacama B-mode Search (ABS)

Experiment

Given the insight on cosmology and particle physics that a detection of the primor-

dial gravitational wave background would result in, there are a number of experiments
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targeting the B-modes, such as Planck [31], SPIDER [19], POLARBeaR [34] and its

planned expansion to the Simons Array, CLASS [15], EBEX [38], ACTpol [27], SPT-

pol [4], QUBIC [22], PIPER, and BICEP/BICEP II/Keck [45, 36]. This dissertation

will focus on the Atacama B-mode Search (ABS) experiment, a 145 GHz polarimeter

optimized for degree angular scales. The telescope was designed and built mainly

at Princeton University, with collaborators at Johns Hopkins University and the Na-

tional Institute of Standards and Technology (NIST). Since its deployment in early

2012 ABS has been taking data in the Atacama Desert of Chile, at an altitude of

17,000 ft (5,200 m). With an array sensitivity of 35 µK
√
s, after a full year of obser-

vation time, ABS is expected to probe r down to ∼ 0.03 (Fig. 1.6).

Figure 1.6: Projected sensitivity of ABS to the EE and BB power spectra after a
full year of observation of the primary CMB patch. The window function assumes
a Gaussian beam of full width at half maximum of 0.58◦. Esimated binned errors
for the EE spectrum and the BB spectrum with r= 0.03 are shown as red and green
boxes.

Acquiring such high sensitivity relies on several factors, the most important of

which are listed here. First, the location of the observation site was chosen for its
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high altitude and low humidity, reducing the in-band loading from the water in the

atmosphere. Second, a half-wave plate spinning continuously at ∼ 2.5 Hz modulates

the polarization signal at ∼ 10 Hz, shifting it away from the 1/f noise of the atmo-

sphere. Third, a series of IR-blockers and low pass filters are inserted at the three

temperature stages of 300 K, 50 K and 4 K, blocking out most of the out of band

radiation before it reaches the fiducial volume of the telescope. Fourth, the mirrors

are in the beam path after the optical filters, and are cooled to 4 K reducing the

thermal loading onto the focal plane.5 Finally, the focal plane, cooled to 300 mK,

is comprised of 240 pairs of state-of-the-art, feedhorn-coupled, transition-edge-sensor

(TES) polarimeters developed by the Quantum Sensors Group at NIST, which were

extensively tested and characterized in a field-able instrument for the first time by

ABS.

The following chapters describe the design, construction and deployment of ABS,

as well as the data obtained in the first few months of observations and the methods

and techniques used to reduce these data for the production of the first CMB po-

larization maps. Chapter 2 describes the ABS instrument with a focus on the feed

horns and the optical filters mentioned above. Chapter 3 presents a characterization

of the raw data acquired from the observations. Chapter 4 describes the data selection

criteria and presents preliminary maps.

5The continually spinning room-temperature half-wave plate element as the first optical element
and the 4 K reflectors are unique to ABS.
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Chapter 2

The ABS Instrument

2.1 Overview

The design of the ABS cryostat was built on the requirement that the focal plane be

at 300 mK and the reflectors at 4 K. The cryostat, as shown in Figure 2.1, is a 1.02 m

diameter by 1.04 m tall aluminum cylinder (40” by 41”), consisting of two lids and,

for easier access to the interior, two stacked cylindrical walls.1 It has four vacuum

seals in all, including that for the window. It consists of four shells in three cryogenic

stages, the vacuum shell and µ-metal magnetic shield at 300 K, an aluminum shell

at 40 K and a cryoperm shell at 4 K which also serves as magnetic shielding. They

are thermally isolated from each other by two G-10 stages. For additional radiation

shielding between the stages, each shell is wrapped with ∼ 30 layers of aluminized

mylar. The 58.5 cm parabolic primary and 57.1 cm hyperbolic secondary reflectors,

arranged in the compact cross-Dragone design, are housed within the 4 K fiducial

volume and mounted to the 4 K baseplate. The focal plane, described in more detail

below, is mounted next to the primary, at a 12◦ angle from vertical relative to the

plane of the primary.

1It was designed by Lucas Parker and was built by Precision Cryogenic Systems, Inc

17



The temperatures of the shells are maintained using two Pulse Tube Cryorefrig-

erators from Cryomech, one PT407 and one PT410, each of which has nominal 4

K and 40 K stages. They are mounted on the side of the cryostat at 45◦ so that

they are vertical and operating most efficiently when the telescope is tilted to 45◦

elevation. In the field the stages operate at 3.6 K and 42 K, at which temperatures

the two pulse tubes together provide 1.0 W and 41 W of cooling power, respectively.

In addition to cooling the 4 K components of the cryostat, the pulse tubes back the

helium adsorption refrigerator system, which is used to achieve the target focal plane

temperature of 300 mK.

2.1.1 Half-Wave Plate

The first thing an electromagnetic wave sees coming from the sky is the ABS continu-

ously rotating 33 cm half-wave plate made of single crystal, A-cut sapphire. Sapphire

is a birefringent material; namely its index of refraction along one axis, called the

extraordinary axis, is less than that along the other two “ordinary” axes. The ABS

disk is cut perpendicular to an ordinary axis, so that the extraordinary and the other

ordinary axis are in the plane of the disk. Linearly polarized light entering a wave-

plate can be decomposed into two waves, each of whose electric field is aligned with

one of these axes. In the plate, the wavelengths of these two components are different.

A half-wave plate (HWP) for a particular frequency is the proper thickness so that

at the far side of the plate, the component aligned with the ordinary or ‘slow’ axis

is delayed by exactly half a wavelength compared to the other ‘fast’ component (Fig.

2.2). The polarization of the outgoing wave is thus reflected through the fast axis,

and further, if the HWP spins with frequency f , constant incoming polarization is

modulated at 4f .

The optimal HWP thickness for the ABS band of 127−163 GHz is 3.15 mm, since

the indices of refraction of the ordinary and extraordinary axes at central frequency

145 GHz are 3.40 and 3.07, respectively. With sapphire having such a high average
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Figure 2.1: The ABS receiver, highlighting the most important features. The 300 K
volume is shown in silver, the 40 K volume in brown, and the 4 K fiducial volume in
purple. G-10 cylinders are used to thermally isolate the stages and the two stages are
shown in green. The focal plane, which runs at 300 mK, is thermally connected to
the helium fridge system housed below the primary mirror by copper cold fingers not
pictured here. The half-wave plate and its air-bearing system are in red. The pulse
tubes are mounted for optimal operation at an elevation of 45◦. Figure courtesy of
Thomas Essinger-Hileman.

index of refraction, the percentage of reflected light oscillates wildly within our band,

ranging from 0 − 70% (Fig. 2.3), and it reflects outgoing radiation back into the

cryostat, modulated at 2f . To minimize this effect, the sapphire was anti-reflection

19



Figure 2.2: Propagation of a wave through a half-wave plate, decomposed into the
fast (blue) and slow (green) components. The polarization is shown in red. The
outgoing polarization is reflected through the fast axis, which for sapphire is the ex-
traordinary axis. In a typical system neither component completes an integer number
of oscillations in the material, as skeched here for simplicity.

coated on both sides with high density ceramic infused teflon, RT/duroid 60022,

chosen for its index of refraction of 1.71 ∼
√

3 and its low loss tangent of tan δ =

0.0012 in the ABS band.

RT/duroid is manufactured by melting teflon, mixing in ceramic particulates and

then letting it cool back down under high pressure between two plates. It is about

as flexible as teflon, and the added ceramic gives it a slightly rubbery feel. The final

thickness of the material is determined by the distance between the plates, which can

be adjusted in increments of 0.127 mm (0.005”). The optimal λ/4 thickness for the

AR coating is 0.310 mm, so the 0.381 mm (0.015”) sheet had to have 0.063 mm shaved

off of it uniformly over its entire 855 cm2 area. This feat was accomplished by Glenn

Atkinson by first gluing the material to a large flat custom-made jig of aluminum to

rigidize it and then machining it in the lathe. Due to the large variation of linear

speed of the cutting tool over the 16.5 cm radius, two different angular speeds of

2Rogers Corporation, www.rogerscorp.com
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Figure 2.3: Transmission through 3.15 mm thick sapphire with no anti-reflection
coating of polarized light parallel to the ordinary (slow) axis in solid blue and parallel
to the extraordinary (fast) axis in dashed green.

the lathe were used to avoid tearing the material. The final sheet had a thickness of

0.31± 0.013 mm.

The glue of choice to adhere the RT/duroid to the sapphire was rubber cement,

because it is sturdy, dries to a negligible thickness, and can also be removed if neces-

sary by being soaked in acetone. To achieve a uniform thickness and avoid bubbles,

a custom vacuum gluing jig was built. Each side was glued separately to ensure that

the RT/duroid was centered on the sapphire. The transmission of the AR-coated

sapphire was measured with a Fourier transform spectrometer built by Blake Sher-

win and Mary Zhang. It employs a thermal source and an old iteration of an ABS

detector, cooled in a test dewar. The sensitivity of the measurement is determined by

the bandpass of the detector, which is 117 − 145 GHz, approximately 10 GHz lower

than the field detectors. The measured transmission at normal incidence compared to

a simulation at the ABS central frequency of 145 GHz is shown in Figure 2.4. They

match to within the error bars.

21



Figure 2.4: Measured transmission of the warm sapphire half-wave plate with optimal
single-layer anti-reflection coating, 0.31 mm RT/duroid 6002. For comparison, the
simulated transmission at 145 GHz is shown through the ordinary and extraordinary
axes. The measurement was taken along a random axis using an FTS, and matches
the simulation in the bandpass of the FTS detector, 117 − 145 GHz, which is lower
than the target bandpass of 127− 163 GHz.

2.1.2 Aperture

Having all the optics at 4 K reduces the loading on the detectors from emission from

the reflector surfaces and from stray light and “spill” from the region around the

optics. However, the requirement that they be inside the cryostat has the drawback

that the aperture size is defined by the smallest opening in the optical path of the

beam through the cryostat. The 30 cm diameter window is mounted in the center

of the top lid. It is 0.3 cm (1/8”) thick ultra-high molecular weight polyethylene3,

chosen for its high in-band transmission and its strength. It is AR-coated with porous

3Commercially available from McMaster-Carr
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PTFE on both sides. Directly underneath the window, the 40 K and 4 K shells also

have openings, on which are mounted and thermally sunk a series of quasioptical

IR-blockers and absorptive low-pass filters which help reduce the thermal loading

onto the 4K stage and the detectors. In ABS the openings at each thermal stage get

progressively smaller, so that the smallest one is the 26.0 cm diameter 4 K filter ring

mount, providing a common cold aperture stop for all detectors (Fig. 2.5).

The 4 K filter stack is composed of two absorptive IR blockers, a 2.54 cm (1”)

slab of polytetraflouroethylene (PTFE) and a 0.95 cm (3/8”) slab of Nylon, and

a quasioptical metal-mesh IR blocker. The overall thickness of the 4 K stack is

geometrically constrained to avoid ray clipping. Nylon is much more absorptive than

PTFE, and while it cuts over 99% of radiation above 1 THz, it also reduces the net

in-band transmission by 2%. At 4 K, PTFE on the other hand is only an effective

IR blocker above 6 THz, but it has a low in-band loss tangent of 3× 10−4 and at 2.54

cm only cuts 3.7% in-band. It is used to block most of the IR radiation and reduce

the thermal loading onto the Nylon, allowing it to equilibrate at a lower temperature.

The centers of the PTFE and Nylon filters were measured to be 16 K and 6 K,

respectively, during a test run in the field. Both of these pieces are AR-coated with

Zitex G-1154, porous teflon with an index of refraction of ∼ 1.2 [6].

A second 2.5 cm thick piece of AR-coated PTFE is used as a filter at the 40

K cryogenic stage to reduce the loading onto the 4 K filter stack. At this higher

temperature the absorptivity of PTFE is 90% above 800 GHz and greater than 99%

above 3 THz. A total of 9 single-layer metal mesh IR-blockers are mounted above and

below the PTFE. These are grids of aluminum squares patterned on 6 µm thick Mylar

substrates, and are nearly purely reflective lowpass filters. The cutoff frequencies are

determined by the grid spacing, and are 1.6, 2.0, and 3.1 THz. Finally, an additional

1.6 THz metal-mesh IR-blocker is placed just beneath the window at 300 K[16].

4Norton Films, http://www.norton-films.com/
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Figure 2.5: Top: Complete layout of the ABS aperture inside the cryostat. The
IR blockers are single-layer square grids of aluminum on 6 µm mylar with cut-off
frequencies of 1.6, 2.0 and 3.1 THz. Both PTFE filters and the Nylon filter are AR-
coated with Zitex. The 4 K cold stop has a diameter of 26.0 cm (10.”). Bottom left:
The 4 K filter stack pictured upside down from its orientation in the cryostat, so
that the PTFE is below the Nylon. The Z-brackets (numbered) allow for the plastics
to differentially contract from the copper mount rings. Copper-tin alloyed wires
are used to thermally sink the copper rings holding the PTFE and Nylon in place.
Before the stack was mounted in the cryostat, aluminum tape was used to seal the
sides and prevent radiation from leaking out from between the layers. Bottom right:
Machining at the ABS site. The author milling the Z-brackets and Tom Essinger-
Hileman tapping the holes for the mount.

24



2.1.3 Focal Plane

The focal plane is mounted next to the primary, at a 78◦ angle from the plane of the

primary. Its 240 feedhorn-coupled polarimeters are mounted in 24 triangular pods of

10 each, and tile it hexagonally (Fig. 2.6). The numbering scheme used to label the

pods and feedhorns is shown in Figure 2.7. To reduce edge effects and maximize the

optical efficiency through the aperture, there is a slight concavity of the focal plane.

Each pod is placed at a unique angle depending on its location in the focal plane,

ranging from zero in the center to 4◦ at the edge, so that the rays from each central

feedhorn pass through the center of the aperture stop. To achieve these unique angles

the pods are mounted on the focal plane support (FPS), a spider web-like structure

which was custom made using a 5-axis milling machine. The FPS is mounted in a

hexagonal support (hex). To isolate the 300 mK stage from the 4 K surroundings, it

is suspended using 635 µm thick Kevlar string, a good thermal insulator, from the 1

K hex, which is in turn suspended from the 4 K hex on the focal plane mount.

2.1.4 Pods

In addition to providing structural support for the feedhorns and detectors, the alu-

minum shells of the pods, which are superconducting below 1.2 K, provide magnetic

shielding for the magnetically sensitive readout circuits within. The feedhorns with

the detector chip emerge through the front of the pod interface plate, which keeps

each detector at its optimal angle, minimizing the beam mismatch between the two

orthogonal polarizations. Each pod’s readout circuit board has two triangular rigid

sections connected by a flexible bridge. One side is glued to the back of the interface

plate and has 10 holes in which the detector chips lie. The detector signal and heater

lines are traced from this section over the bridge and onto the other, which houses the

interface chip with the shunt resistors and the Nyquist inductors, as well as the mul-

siplexing (mux) chip. To further magnetically shield the SQUIDs, two niobium sheets

25



Figure 2.6: The focal plane is shown here with all 24 pods of 10 feedhorns each.
The gold-plated copper focal plane support (FPS) can be seen between the pods.
The FPS is mounted in the 300 mK hex, which is thermally coupled to the 3He pot
via the cold finger, which can be seen in the lower left corner along with the ROx
thermometer. The 300 mK hex is nested in the 1 K hex with a kevlar suspension
system, part of which can be seen here. The 1 K cold finger and ROx can be seen in
the lower right corner of the focal plane. The 4 K hex is directly behind the 1 K hex,
and part of it can be seen in the upper left corner of the photo. The aluminum in
the lower right corner is part of the primary reflector plate, the curved part of which
is outside of the frame of the photograph. The numbering scheme for the pods and
feedhorns is shown in Figure 2.7. 26



Figure 2.7: A map of the designed detector offsets from boresight, as well as the
polarization angles of each pair. The red ticks and numbers signify TES As, and
the blue TES Bs. The last two digits signify row number and the first two digits,
assuming leading zeros, column number. TESes sharing an address line are said to
be in the same row, and those in the same pod are said to be in the same column.
Columns 0-3 and 16-23 comprise the ‘top’ half, and columns 4-15 the ‘bottom’ half.
The detectors are displayed according to their physical position in the focal plane
(Fig. 2.6), and so the projection onto the sky is flipped in elevation, indicated by the
flipped y-axis. The ‘top’ half in fact looks lower on the sky than boresight, and the
‘bottom’ looks higher. Figure courtesy of Mike Nolta.
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are installed above and below the mux chip. The electrical connection between circuit

board and detector chips is made through aluminum wirebonds, done by Bert Harrop

at Princeton. The flexible bridge is then folded, so that the two triangular sections

overlap and fit into the aluminum pod casing directly behind the feedhorns[16, 3].

2.2 Cryogenics

Three closed cycle sorption refrigerators are used to cool the detectors and optics

below the pulse tubes’ base temperature. Our refrigerators were originally designed

by Mark Devlin’s group at the University of Pennsylvania[11]. At Princeton they were

constructed, characterized, and optimized by Judy Lau for the C-Cam instrument

[24]. One 4He sorption refrigerator backs the 3He fridge that cools the focal plane to

∼300 mK, while the other 4He fridge cools the support structure of the focal plane

and the detector cable heat sinks to ∼750 mK.

Figure 2.8: Schematic of the 4He1 and 3He refrigerator system used to cool the focal
plane to ∼300 mK. The 4He2 fridge is identical to the 4He1 fridge, except that its
pot is connected to the 1 K hex of the focal plane support. Figure from [24].
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Sorption refrigerators cool by evaporation, lowering the pressure above a liquid

allowing the higher energy molecules to escape, and thus cool the liquid until the

vapor pressure equals the pressure above the liquid. Each of the 3He/4He sorption

fridges is a cylinder with a condensation plate in the middle, a pot for collecting the

condensate at the bottom, and a charcoal sorb at the top (Fig 2.8). At the start of the

cycle, the charcoal is heated to 40 K to expel the helium, while the 4He condensation

plate, which is thermally connected to the 4 K baseplate, condenses the 4He into the

pot. The 4He charcoal is then cooled by the baseplate via a heat switch to less than

10 K, at which point it starts pumping on the helium vapor, cooling the pot to ∼750

mK. This is below the condensation temperature of 3He, and so the same process can

be repeated with the 3He fridge, whose condensation plate is thermally connected to

the 4He pot. With no thermal load, the 3He pot reaches a minimum temperature of

218 mK.

Two annealed copper fingers, 0.64 cm (1/4”) diameter and about 60 cm long each,

are used to thermally couple the focal plane and its support structure to the 300 mK

and 1 K pots. The fingers terminate in a flattened region termed the “spatula”

to maximize the contact area with the focal plane hexes (Fig. 2.9). Ruthenium

Figure 2.9: The 300 mK spatula, and just above it, a Ruthenium Oxide (ROx)
temperature sensor.
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Oxide temperature sensors (ROx’s) were used to measure the load curves of the

refrigerators and the thermal coupling coefficients G between the various joints. They

were measured directly in the cryostat, with the optics and focal plane support (FPS)

in place and with the window replaced with a reflective cover. The loads were applied

with heaters on the 300 mK and 1 K stages of the focal plane, and the temperatures

at the multiple joints were measured (Fig 2.10). The target temperature for the focal

plane, i.e. the pod, is 300 mK, which is achieved as long as the extra thermal and

optical loading on the 300 mK stage from the detectors and the open window do not

exceed 10 µW. In the field, the base temperature of the focal plane is just below 300

mK. However, the scanning motion creates temperature spikes at the turn-arounds.

Thus we run by servoing the temperature to 315 mK, and at low elevations where

this effect is amplified, we servo to 330 mK. The temperature of the 3He pot is 245

mK, consistent with a 17 µW loading on the focal plane.

2.3 Feedhorns

Corrugated feedhorns are often used at far infrared and microwave frequencies because

they feature low sidelobes, and isometric beam patterns, where the received power is

a function only of the angle from the axis of the horn to a good approximation. In

addition to maximizing the efficiency, beam isometry also results in low cross-polar

response, on the order of −30 dB, as compared to −20 dB for smooth wall circular

horns [28]. This is particularly important for polarimeters, since a higher cross-polar

response effectively decreases the polarization signal.

Achieving an isometric co-polarization beam pattern requires that the aperture

electric fields in the horn also be isometric, a direct consequence of the fact that

they are the Fourier transform of the radiated fields[28] . The only non-trivial field

that satisfies this is the linear field, which also ensures zero cross-polarization. This
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Figure 2.10: 3He and 4He refrigerator system load curves taken while the window of
the cryostat was replaced with a reflective plate. The heaters were on the focal plane
support (FPS) and the 1 K hex, respectively. The temperature gradient through the
systems is clearly visible.
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cannot be achieved with smooth-walled conductive feedhorns, since they only support

pure transverse electric (TE) or transverse magnetic (TM) modes which have curved

aperture field lines (Fig 2.11a). Only a hybrid mode, one that has both electric and

magnetic field components in the direction of propagation, can produce nearly linear

aperture fields (Fig 2.11b).

Corrugated feedhorns are one of two types of ‘hybrid-mode feedhorns.’5 The cor-

rugations act as short circuited transmission lines, and if they are quarter wavelength

deep, the short circuit at the end of the corrugation is transferred to an open circuit

at the corrugation boundary. For corrugation spacing that is small enough compared

to the target wavelength, the effect of the ridges can be ignored and the walls of the

feedhorn can be approximated to a smooth surface with infinite impedance. This

boundary condition allows hybrid modes to propagate through the feedhorn.

a) b)

Figure 2.11: Left : The dominant transverse electric (TE11) mode in a cylindrical
waveguide. The lines represent the electric field lines in a cross-section of the waveg-
uide where they are maximum. Right : Nearly linear electric field lines of the hybrid
HE11 mode, supported by corrugated feedhorns. The linearity yields an isometric
co-polarization beam pattern and low cross-polarization response. Figure adapted
from [28] .

2.3.1 Design

The four aspects of a corrugated feedhorn that determine the radiation pattern and

efficiency are the aperture diameter, the flare angle, the corrugations, and the throat.

5The other type is the dielectric-cone feedhorn, not discussed here.
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The aperture diameter and flare angle together determine the FWHM of the copolar

beam pattern and the variation of beam width over a range of frequencies[9]. The

corrugation depth determines the central frequency, at which the E and H plane

patterns are most similar, and the cross-polar response minimum. The transmission

line model discussed above suggests that the optimal depth for a particular wavelength

is λ/4, however owing to the annular shape of the corrugation wall, in practice this

may vary from 0.25λ to 0.3λ. The corrugation spacing needs to be such that there

are sufficient number of corrugations along the guide walls to mimic a continuous

surface impedance; four corrugations per free space wavelength are usually sufficient

[28]. Finally, the throat of the horn, usually the first 10 corrugations, serves to match

the impedance of the waveguide to the ∼ λ/4 deep corrugations. The first slot is half

a wavelength deep, having zero impedance according to the transmission line analogy

and matching the smooth-walled waveguide, and then the depths slowly taper to the

nominal depth.

The performance of corrugated horns can be very accurately predicted using the

“modal-matching” technique: the horn is divided into a series of short cylindrical

waveguide sections and the fields are matched at each junction between sections.

The exact geometry of the feedhorn can be investigated and the effect of a single

corrugation of the wrong depth can be observed. The ABS feedhorn was designed by

Jennifer Lin using the modal-matching program CCORHRN, which was developed

by YRS Associates [37]. It was optimized for beam isometry and low voltage standing

wave ratio (VSWR) in the observation band 127− 163 GHz. The VSWR is the ratio

of the amplitude of a partial standing wave at an antinode to the amplitude at an

adjacent node in a transmission line. A partial standing wave is a superposition of a

standing wave and a transverse wave, or equivalently, two waves traveling in opposite

directions of the same frequency but different amplitude, such as an incoming wave
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and a partially reflected wave. It is related to the complex reflection coefficient Γ as

V SWR =
1 + |Γ|
1− |Γ|

. (2.1)

The VSWR is greater than or equal to unity, where unity signifies perfect transmis-

sion, and infinity signifies total reflection. Figure 2.12 shows the simulated VSWR

of the horns overplotted with the Atacama atmospheric transmission in the ABS ob-

servation band. The simulated E and H plane beam profiles at central frequency 145

GHz (2 mm wavelength) are shown in Figure 2.13.

Figure 2.12: Atacama atmospheric transmission (thin blue) plotted with the voltage
standing wave ratio (thick green). The ABS observation band is between the two
vertical lines (127− 163 GHz) and is bounded by the O2 absorption line centered at
117 GHz and the H2O absorption line centered at 183 GHz. In-band, the atmospheric
transmission is typically above 80% and the VSWR does not exceed 1.07.

The feedhorns were manufactured from aluminum alloy 7075 by Glenn Atkinson,

Master Instrument Maker in the Princeton Physics Department machine shop, on

a computer numerical control (CNC) lathe. The waveguide is 1.6 mm in diameter

and the corrugations are only 250 µm wide and up to 984 µm deep (Fig 2.14), and
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Figure 2.13: E− and H−plane simulated beam maps for the ABS feedhorn geometry
at central frequency 145 GHz, as calculated by CCORHRN. The FWHM is 15.5◦ for
the E−plane and 16.0◦ for the H−plane. The forward gain is 21.5 dB and the solid
angle is 0.24 sr.

were made using a custom-made 90◦ steel tool. This extremely narrow tool could

not be made long enough to reach the corrugations near the wave guide, and so the

feedhorns were machined in two parts, called the detector package and the feed, which

were bolted together prior to any testing, to ensure that the joint was accounted for

in the beam maps. A total of 254 feedhorns were manufactured.

2.3.2 Room Temperature Testing

After machining, the feedhorns went through a cleaning process to rid them of grease

and chips that may have been stuck in the corrugations. The first step was the

standard ultra-sonic cleaning with isopropanol and acetone followed by a blow dry.

A fiberscope was then used to find any remaining chips, and a flexible handle mi-

crobrush with a 1.5 mm diameter cylindrical polyurethane foam tip, slightly smaller
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Figure 2.14: Cross-section of the cylindrically symmetric ABS feedhorn and waveg-
uide. A solid black line indicates where the joint is between the detector package
on the left and the feedhorn on the right. The steps in the throat provide a smooth
transition For a full drawing of the design see [16].

Figure 2.15: Photo of an ABS feedhorn with a penny for scale. The corrugations
are partially visible.

than the waveguide, was used to brush them out. A torque screwdriver was used

to incrementally tighten the 3 screws at the joint to ensure that the two parts were

coupled in a flat, symmetric manner.
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Figure 2.16: The room temperature testing apparatus was built to test one feedhorn
at a time, using a narrowband 147 GHz source and a waveguide broad band detector
(110-170 GHz). The source is stationary, and the horn and detector are attached to
a rotary table, the axis of which is aligned with the phase center of the horn. The
output of the detector is a voltage proportional to the signal. The signal from the
source is chopped and filtered through a lock-in amplifier to eliminate out of band
noise.

A room temperature beam mapping station was used to measure the beam maps

of each feedhorn (Fig 2.16). The source used was a narrowband 147 GHz Gunn diode

oscillator6, and was placed in the far field approximately 0.6 m from the feedhorn

being measured. The feedhorn, coupled to a D-band (110−170 GHz) diode detector7,

was attached to a rotary table, the axis of which was aligned with the phase center

of the horn. The source was modulated at ∼ 135 Hz by a chopper, and the output

from the diode was passed through a series of pre-amplifiers and passband frequency

filters before going to the lock-in amplifier. The total electronic gain was on the

order of 105. Eccosorb foam was used to cover all surfaces and the wall to minimize

interference from reflections and bring the noise floor to below −30 dB. The E− and

H−plane beam maps of all feedhorns were measured individually, an effort that was

aided by several Princeton undergraduate summer students: Cheryl and Nicole Quah,

Rutuparna Das8, Sean Frazier and Dragos Potirniche.

6Zax Millimeter Wave Corporation
7Pacific Millimeter Products
8visiting from MIT
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2.3.3 Selection

To compare the measured beam maps to the simulations, a 2-dimensional analog of

the solid angle was used:

a =
2π
∫ Θ

−Θ
F | sin θ| dθ

2π
∫ Θ

−Θ
Fsim| sin θ| dθ

, (2.2)

where F is the measured beam map and Fsim is the simulated beam map for that

plane. Introducing the absolute value and integrating over ±Θ is equivalent to taking

the average of the two halves of the measured beam map, which may not be the same.

For an ideal beam map, the above integral would be taken over the full range [−π, π),

and in that case the numerator would be the solid angle of the beam assuming it is

isometric. In this set-up the noise floor is at around −30 dB and dominates the beam

maps at angles larger than 30◦. For this analysis we use Θ = 25◦, which includes the

main peak and the first side lobe, cutting off at −22 dB.

Several measures were used to identify faulty feedhorns. First, the feedhorns with

too wide of a beam were identified by looking at aE or aH . Wide beams increase

the loading onto the detectors from scattered light within the cryostat. Next, the

feedhorns with excessive left-right asymmetry of either their E− or H−plane map

were identified by looking at the difference of aleft and aright, obtained by taking the

above integral from [−25◦, 0◦) and (0◦, −25◦], respectively. This was done to ensure

that feedhorns like number 224 (Figure 2.17 d.) with average overall width but with

a big side lobe are also discarded. The effect of the asymmetrical testing station,

with the wall on one side and the open room on the other, is on the order of 4% in

aleft/aright. Finally, the isometry of the beam pattern was tested by looking at the

ratio aE/aH .

The means and standard deviations of each of those three measures of the 254

horns machined are shown in Table 2.1. A 3σ cut-off was imposed on each measure,
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Figure 2.17: Examples of beam maps taken with the room temperature testing
station. Panels a and b show the E− and H−plane patterns, respectively, of one of
the best feedhorns. The E−plane matches the simulation to better than 1% and the
H−plane is better than 4%. Panel c : An E−plane agreement of 13%, just barely
passing the 15% cutoff. Panel d : Example of a beam map whose overall beam
width matches the simulation to within 5%, but was discarded due to its left-right
asymmetry of about 20%.

resulting in a total of 34 horns being discarded. The tops and bottoms of the discarded

horns were taken apart and reassembled in different pairs and measured, and in this

way the remaining 20 horns were obtained with desirable beam patterns. The final

distribution of E− and H−plane solid angles of the horns can be seen in Figure 2.18,

with the discarded ones highlighted, and the average beam maps are shown in Figure

2.19.
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Figure 2.18: Scatter plot of the E− and H−plane divergences for the ABS feedhorns.
The blue dots represent the ones that are currently in the focal plane. The red dots
represent the ones that were discarded. The red dots that are not outliers displayed
left-right asymmetry, which is not visible in this plot. Further, out of the 34 original
feedhorns that were discarded, 21 are not shown here because they were discarded
based on their E−plane beam map alone, and their H−plane map was not taken.
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Measure Original 254 Horns Final 240 Horns

E−plane beam width 1.7± 5.3% 1.2± 3.4%

H−plane beam width 3.5± 4.0% 3.4± 3.8%
Left-right asymmetry 4.9± 3.6% 4.3± 2.9%

Isometry 1.5± 5.8% 1.6± 4.8%

Table 2.1: The final statistics of the feedhorn beam patterns most critical to ABS
compared to the initial ones. The E− and H−plane beam widths are compared to
their respective simulations. The left-right asymmetry compares the left half of the
beam map to the right, and the isometry compares the width of the E−plane beam
map to that of the H−plane.
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Figure 2.19: The average E− and H− plane beam maps of all good feedhorns are
both within 1% of the simulated beam maps.
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Chapter 3

Data Characteristics

3.1 First Season Observations

Landing at the site on Cerro Toco on 16 January, 2012, ABS took 6 weeks to deploy

and saw first light on 27 February. The first CMB data with half-wave plate (HWP)

and baffle mounted were taken on 13 March. The last day of the first season of

CMB observations was 3 January 2013. Out of the 296 days total, 94 days were

lost due to long-term mechanical repairs. Of the remaining 202 days (4848 hours),

ABS was observing for 2,600 hours, or 54% of the time, and of those, 1,938 hours

(40%) were spent observing CMB data. The other 662 hours were spent observing

the galaxy, calibrating off point sources such as the moon, planets, the polarized

galaxy Tau A and the embedded cluster RCW 38, doing scans in elevation called sky

dips, and various other tests. While ABS is running consistently, the recycling of

the fridges takes 8 hours and each cycle lasts approximately 40 hours, completing a

full 2 day period. This means that an additional 11% of the 202 days was devoted

to cycling the fridges. Current versus voltage curves (IV curves) for each TES and

SQUID biasing before each observation account for an additional 77.7 hours, or 3.0%,

leaving 32% (∼1550 hours) to smaller scale maintenance and adjustments of software
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and hardware. Table 3.1 summarizes the major events that occurred throughout the

season, and Table 3.3 breaks down the total observation time by target.

3.1.1 Observation Strategy

ABS employs a few types of observation strategies, depending on the purpose and

target of the observation. The primary one, used when observing targets, involves

scanning in azimuth at a constant elevation, and letting the sky move across the field

of view with time. With constant elevation scans (CESes), the atmosphere thickness

through which the signal travels is constant and the cryogenics remain stable for the

duration of the scan. Complementary central azimuth angles around south are used

to catch the same patch of sky as it rises and sets and scan it in complementary

directions. This cross-linking technique reduces systematic effects in the mapping

due to the scan and improves the sampling of CMB modes perpendicular to the scan

direction. The elevations and central azimuth angles used for the four CMB fields are

summarized in Table 3.2. The scan speed and width are 0.75◦/s and 10◦, respectively,

as measured by the azimuth encoder, so the speed and width on the sky depend on

the elevation (Tab. 3.2).

Field A is the primary and largest CMB field, and so a single elevation with

complementary azimuth angles is required to observe it. The other three fields are

smaller, and move through the field of view faster, thus requiring four different ob-

servation points, two while rising and two while setting, to observe them efficiently.

ABS also observes smaller, point-like targets, like the moon, Saturn, Jupiter, Venus,

the galaxy Tau A and the star cluster RCW 38. The purpose of these observations is

to calibrate the pointing of the telescope, the optical efficiencies of the detectors, and,

for the polarized Tau A, to calibrate the polarization sensitivity of the focal plane

and the absolute detector polarization angles.1

1Once we start seeing the CMB in the data, the final calibration will come from comparing to
WMAP [7] and the latest Planck results[32].
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Date Event

17 January ABS lands at the Cerro Toco site.
7 February First cool down, no focal plane.
27 February First light, without HWP, baffle, or ground screen.
28 February Saw the moon.

9 March Half-wave plate mounted.
11 March Baffle mounted.
12 March Tightened HWP spring.
13 March Database starts.
14 March Scanning motor turn-around smoothed.
22 March HWP airbearing screws adjusted.
23 March Added heat tape to HWP enclosure
2 April Saran wrap tests.
4 April 1” wire-grid measurements.
7 April Ground screen mounted.
9 April Sequential data acquisition set up.
16 April Saran wrap layer inserted at base of baffle

16 - 21 April HWP compressor burned and replaced.
23 April HWP air bearings tuned.

16 May - 6 June Down time due to crushed pulse tube line.
8 June TES biasing problem fixed after down time.
10 June HWP working again after down time.
6 July Bump starts being visible in 1/f noise, also in dark squids.
8 July Cable wrap problems start.

8 - 21 July Down time due to bad weather and cable wrap problems.
5 August Azimuth drive malfunction.
7 August Clutch alignment problem discovered.
8 August Switch to scanning with azimuth motor.
25 August Blackened baffle loading tests.

TOD lengths changed to 150 frames = 5 min.
31 August - 11 Sept Down time to make baffle shiny.

14 September Scan motor reinstalled with newly aligned clutch.
Azimuth motor motion smoothed.

19 September 9◦ azimuth shift discovered.
27 September Adjusted the azimuth encoder offset by 9 degrees.
20 November Problem with elevation brake and clutch not working.

25 November - Down time due to cable wrap.
27 December

3 - 21 January FTS and wire-grid measurements.
21 January End of season, ABS turned off.

Table 3.1: A log of major events and changes that took place during ABS’s first
season of observation.
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Field CES elevation (◦) Central azimuth (◦) Scan width (◦) Scan speed (◦/s)

Field A 46.5 130 6.8 0.52
46.5 230 6.8 0.52

Field B 44.5 67 7.1 0.53
63.5 30 4.5 0.33
63.5 330 4.5 0.33
44.5 293 7.1 0.53

Field C 64.5 106 4.3 0.32
78.5 117 2.0 0.15
78.5 225 2.0 0.15
64.5 254 4.5 0.32

Field D 51.5 126 6.2 0.47

70.5 148 3.3 0.25
70.5 210 3.3 0.25
51.5 233 6.2 0.47

Table 3.2: Elevation and azimuth positions of CMB field observations. Angles are
defined so that an elevation of 90◦ points to zenith, and azimuth of 0◦ points north.
Field A is large enough that it only requires two complementary observation positions,
and the other three fields require four.

3.1.2 The Data

Each detector acquires data at a frequency of 200 Hz, which is stored as time ordered

data (TOD) in binary dirfiles named

1339311311︸ ︷︷ ︸
ctime

dirfile. 003︸︷︷︸
seq

where ctime is the unix time stamp of the start time of the TOD, and seq represents

the sequence number of the TOD within a particular CES. Figure 3.1 is an example

of a CES. Each TES is named after the row and column, with TESes sharing a pod

being in the same column, and TESes sharing a bias line being in the same row (Fig.

2.7). There are 24 columns and 22 rows. In addition to the 20 TESes (2 for each of

the 10 feed horns), each row has 2 “dark” SQUIDs which are not connected to any
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Target num frames Time (seconds) Time (hours) % total

Field A 2,402,165 4,804,330 1,334.5 51.3
Field B 356,828 713,656 198.2 7.6
Field C 503,904 1,007,808 279.9 10.8
Field D 729,523 1,459,046 405.3 15.6
Moon 256,267 512,534 142.4 5.5
Saturn 62,384 124,768 34.7 1.3
Jupiter 42,527 85,054 23.6 0.9
Venus 8,474 16,948 4.7 0.2
Tau A 62,008 124,016 34.4 1.3
RCW 38 40,744 81,488 22.6 0.9

sky-dips 53,566 107,132 29.8 1.1

testing 159,726 319,452 88.7 3.4

All targets 4,679,650 9,359,300 2,599.8 100.0

IV curves 279,720 77.7 3.0

Fridge cycling ∼ 300 11

Table 3.3: Time spent on each target during the first observation season. Fields A, B
and D are CMB fields and Field C is a galactic field. The ‘testing’ category includes
side lobe measurements using the sun, and various tests like baffle tests, azimuth and
scan motor tests, saran wrap tests and HWP tests. The IV-curves and fridge cycling
are not included in the total time for the targets, and the fridge cycling time is an
estimate.

TESes. The readouts from the dark SQUIDs provide useful information about the

non-optical noise present in the detectors.

We varied the length of TODs during the season until finally settling on 5 minutes.

At first, following ACT, we aimed for approximately 15 minutes, but because we

wanted to have the number of samples in a TOD close to a power of 2, we chose

217 samples = 10.9 minutes. To increase the versatility of observation schedules this

number was soon decreased to 216 samples = 5.46 minutes. It was soon realized that

when a TOD was stopped in the middle of a 2 second frame, the rest of the 400

samples in that frame were given the value zero, creating a slight complication when

combining multiple TODs together to form a CES. For greater ease in combining
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Figure 3.1: An example of a constant elevation scan (CES) from TES r00c00. It is
75 minutes long and consists of 15 TODs of 5 minutes each, with no time gap between
them. At 200 Hz data acquisition rate, there are 9× 105 samples. The sched id and
sched subid of this CES are (1983,13), and it was taken on 6 October, 2012. This was
a very good observing night with a PWV of 0.24 mm. The slow drift is dominated
by changes in atmospheric brightness. The high-frequency noise is dominated by the
half-wave plate modulation of the incoming polarization, seen in more detail on the
right. The y-axis is the change in temperature in CMB equivalent units.

TODs, their length was further reduced to a round number of 60,000 samples, or 5

minutes, eliminating the creation of null samples.

The raw units of the TODs are DAC counts, representing the current that is

flowing through each TES after being amplified by a series of SQUIDs. To convert

DAC counts to observed temperature in the sky one must take into account both

electrical and optical properties of the system. The responsivity, converting DAC

counts to power fluctuations on the TES islands, are derived from the IV curves

taken at the start of each CES[3]. To get from power on the TES to temperature

on the sky, the optical efficiency ε is required, which is a combined efficiency taking

into account the detector on-chip efficiency, and the loss from the feed horns, optical

filters, window and baffle. They are discussed in more detail in Section 3.4.

To better understand the fluctuations visible in the timestream, it is useful to

look at the power spectrum. Figure 3.2 shows the power spectrum for the timestream
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Figure 3.2: Power spectral density of a constant elevation scan, the timestream of
which is shown in Figure 3.1, taken when the PWV = 0.24 mm. The scan frequency is
denoted by the vertical dashed black line. The knee frequency, at which the dominant
source of noise changes from being the atmosphere to detector Johnson noise, is at
around 1 Hz. The half-wave plate frequency at 2.56 Hz and its multiples, up to even
the 7f, are visible. By far the largest peak is the 2f peak, which is about 100 times
the 1f peak.

shown in Figure 3.1. The best fit line is removed from the timestream and the Welch

apodization function is applied prior to taking the FFT, to reduce ringing created by

the abrupt jumps at the beginning and end of the file. The atmosphere, described in

more detail in section 3.2, is the source of the 1/f noise visible at frequencies lower

than ∼ 1 Hz. We avoid taking CESes longer than 75 minutes due to the possibility

that the SQUID tuning may drift. Above 1 Hz, the detector white noise dominates

over the atmosphere, and the HWP frequency and its harmonics are clearly visible.

The scan frequency is visible at 0.02 Hz
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3.2 The Atacama Atmosphere

The atmosphere is the primary foreground of the CMB signal, as it is an absorber-

emitter of radiation in the ABS band. The dominant lines are due to excitation of

rotational modes of water molecules centered at 183 GHz and one of the two lines

of a molecular oxygen doublet centered at 117 GHz2. The ABS band was chosen

to be in the relatively transparent region between these lines, but it is still affected

by the tails of the distributions. The O2 level in the atmosphere remains relatively

constant over time, whereas the H2O level depends on the weather. The level of

water is quantified by the precipitable water vapor (PWV), the depth of water in a

column of the atmosphere, if all of that water were precipitated as rain, and as such

is measured in units of length.

Figure 3.3 shows how the transmission of the atmosphere in the nominal ABS

band depends on the PWV, and in turn how the temperature of the sky depends on

PWV. In fact, only one half of the focal plane has the nominal pass band; the second

half was fabricated with a pass band shifted higher by 15 GHz, namely 142 − 178

GHz, making it more sensitive to the water line. The nominal and shifted halves

coincide with the ‘top’ and ‘bottom’ halves of the focal plane as defined in Figure 2.7.

Figure 3.4 shows the distribution of PWV during the 2012 observation season, and

Figure 3.5 overplots the PWV and detector RMS over the first season.

Before we calculate the expected loading on the detectors, we first introduce some

telescope definitions. For each feed horn we define the normalized beam pattern, sim-

ilar to section 2.3, but taking into account the optics of the telescope. The normalized

beam pattern is defined as

Pn(θ, φ) =
P (θ, φ)

Pmax

, (3.1)

2The other line is at 60 GHz
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a.

b.

Figure 3.3: Top: The transmission of the atmosphere for several values of precipitable
water vapor (PWV). The nominal ABS band (top half) is shaded in blue and the
shifted band (bottom half) in red. As expected, the O2 line at ∼ 118 GHz stays
constant, whereas the water line at ∼ 183 GHz gets bigger and wider for higher
PWV. The data are according to the Chajnantor Weather Model[1], taken from the
ALMA site on the Chajnantor plateau a few miles from the ABS site, at an altitude of
5,040 m. Bottom: The temperature of the sky as seen by the two groups of detectors
when they are both at 55◦ elevation, assuming top-hat bandpasses with with a 35
GHz width. Due to the 15 GHz shift, the bottom half of the detectors see a hotter
sky than the top half for a given elevation, an effect which is amplified with higher
PWV.
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Figure 3.4: A histogram of the number of minutes of data taken over a range of
PWV. The blue indicates all data, and green is CMB data only. The lower and upper
quartiles were at 0.50 mm and 1.39 mm, respectively. PWV data are taken from the
APEX weather monitor, which is shut down during storms and for a period of time
following the storms, until their site is accessible again. An additional 112 hours of
CMB data were taken during which PWV data were not available.

where P (θ, φ) is the power received from a given direction relative to the center of

the feed horn. The beam solid angle is then defined as

Ωb =

∫ ∫
4π

Pn(θ, φ)dΩ. (3.2)

The effective aperture parameter, Ae, describes how much power is captured from

a plane wave arriving from the direction of maximum gain of a feed horn. If p is the

surface power density of the plane wave and Pt represents the power deposited on

the detectors, then Ae = Pt/p in a system with no loss. A general relation for the

effective aperture in terms of the beam solid angle for a single mode of radiation is

given by

Ae =
λ2

Ωb

. (3.3)
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Figure 3.5: PWV (black) over the first season, and the RMS of a detector samples
at 200 Hz in the top half of the focal plane, r00c00, with color coded targets. The
diurnal variations in PWV are due to Easterly winds in the evenings which carry
moisture from the Amazon basin. The gaps in the data correspond to the down times
outlined in Table 3.1. The gaps in PWV are due to the APEX monitor shutter being
closed during storms and sometimes for days afterwards, until their site is accessible
again.
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In other words, a more focused beam has a larger effective aperture than a wide beam.

Now we are ready to apply these definitions to the atmosphere. We model the

atmosphere as a grey body, and since its temperature is Tatm ∼ 270 K, at 150 GHz

where λ = 2 mm we can work in the Rayleigh-Jeans regime. We define the optical

depth of the atmosphere with transmission coefficient T at zenith as τ = − ln(T ), and

fractional air mass at elevation angle θel as α = sec(90◦−θel), such that at zenith α is

unity and increases towards the horizon. This is a good approximation for θel > 20◦

using the slab model of the atmosphere. Then the intensity of the atmosphere is

Iatm =
2kTRJ

λ2
, (3.4)

where TRJ = Tatm(1−e−τα) is the Rayleigh-Jeans equivalent temperature. The factor

of 2 accounts for both polarizations. For the beamwidth per feedhorn of θfwhm =

0.58◦, the maximum variation of α across a beam, occurring at the lowest observable

elevation of θ = 35◦, is around 1% and can be approximated as a constant. The flux

of power through the aperture arriving at a particular feed horn then is

Satm =

∫
beam

IatmdΩ ' IatmΩb. (3.5)

The ABS band is narrow enough that we can assume that the net flux is constant

through the entire band, and equal to its value at the central frequency, f0 = 150

GHz, or λ0 = 2 mm. Doing so allows us to write the net power as

W =

∫
∆f

∫
A

Satm(f)dfdA ' AeSatm(f0)∆f ' 2kTRJ∆f, (3.6)

where the last relation is in the Rayleigh-Jeans regime and uses the effective aperture

relation from Eq. 3.6. It is worth noting that the effective aperture is different for

each feed horn, since the angle between the center of each feed and boresight varies
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from approximately 1◦ to 12◦ over the focal plane, which in turn affects the size of

the physical aperture at the 4 K cold stop. This effect is countered by the variations

in Ωb for each feed, and so the final power incident on each feed is dependent only on

its bandpass. According to this calculation, on a day when the PWV is 0.25 mm and

the temperature of the atmosphere is 250 K, the loading onto the detectors should

be around 4 pW when pointing at zenith.

This calculation assumes perfect optical transmission, while in reality we must

multiply by an efficiency εi to get the actual power absorbed by detector i. This

calibration is discussed in section 3.4.

3.2.1 Atmospheric Turbulence

The water vapor in the atmosphere acts not only to absorb radiation in the ABS

band, but it also refracts the radiation which is not absorbed. To characterize the full

effect of the refraction, one must consider the dynamic properties of the atmosphere.

Turbulence causes the local density of water to vary across the field of view and

over time. The result is that as the atmosphere moves across the field of view,

fluctuations in the effective PWV for each detector causes temperature fluctuations

in the timestream of the detectors.

According to the Kolmogorov model of turbulence (Tatarskii 1961), the power

spectrum of the fluctuations in a large 3-dimensional volume is proportional to κ11/3,

where κ is the wave number of the fluctuations. The main assumption of the model

is that the kinetic energy from larger scale fluctuations is almost entirely transferred

to smaller scale fluctuations, being dissipated into heat only at the smallest, critical

scale. Fluctuations which are large compared to the physical size of the system fall

into the 2-dimensional regime, and their power spectrum is proportional to κ−8/3.

The field of view of each detector, 0.58◦, is small enough that the spatial inhomo-

geneities in the atmosphere due to turbulence are essentially frozen in time, i.e., they
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form a fixed pattern, which blows across the field of view with wind. The relationship

between the fluctuations’ wave number κ and their frequency f in the timestream

is proportional, and the constant of proportionality is determined by a combination

of the scan speed and the wind speed, and so the κ−11/3 and κ−8/3 dependence of

the power spectrum translate to f−11/3 and f−8/3 relation in the timestream power

spectrum, for the 3- and 2-dimensional regimes, respectively. The physical dimen-

sion of the system in this case is the thickness of the atmospheric layer supporting

the turbulent motions (Church 1995; Lay & Halverson 2000), on the order of a few

kilometers. It is the source of the increased noise at low frequencies.

Figure 3.6 shows the effect of the atmospheric turbulence on the CES power

spectra. the curves are the average of the power spectra of CESes taken in the PWV

bins 0.24±0.1 and 1.7±0.1 mm. As expected, the overall power due to the atmosphere

is greater for higher PWV. At frequencies below ∼ 0.3 Hz the fluctuations follow the

2-dimensional model, and at slightly larger scales, corresponding to frequencies up

to ∼ 2 Hz, they slowly transition into the 3-dimensional regime. Above 2 Hz the

detector white noise becomes the dominant source of noise.

3.2.2 Beam Overlap

To calculate the overlap of beams from adjacent feed horns, one must take into ac-

count both the finite aperture size and the full width half maximum (FWHM) of

each beam. Considering only the former would give the overlap provided the beams

were perfectly collimated. This is a good approximation for short distances, where

(aperture size)/(distance from aperture) >> (angle between the beams). Consider-

ing only the latter gives the asymptotic overlap of the beams on the sky, where the

aperture size is negligible (Fig. 3.7). For a more accurate description at intermediate

distances, the beam profile must be convolved with the finite aperture size.
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Figure 3.6: Atmosphere power dependence on PWV. The curves follow the expected
pattern, with 2-dimensional turbulence at low frequencies or larger physical scales
(red dotted line), and increasing to 3-dimensional at around 0.3 Hz (purple dotted
line), until the detector white noise takes over at around 2 Hz The regular peaks are
the scanning frequency and its harmonics. [14]

In spherical coordinates (θ, φ, r) where θ and φ are both defined to be zero at

the center of the beam, the beam profile F (θ, φ) is independent of r. The angular

diameter, ∆θ of the aperture of physical diameter a decreases as ∆θ = 2 tan−1(a/2r),
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a. b.

Figure 3.7: Beam overlap in the limiting cases of being very close to the aperture
(a), where the physical aperture size dominates the overlap, and very far from the
aperture (b), where its physical size becomes negligible.

which in the limit of large r simplifies to the inverse square law for the solid angle

σ ∼ ∆θ2 ∼ 1/r2.

For ABS, the aperture is the 4 K cold stop, with a diameter of 0.26 m. The FWHM

of the beam was measured to be 0.58◦ and the angle between beams of adjacent feeds

within the same pod is 1.2◦. Approximating the beams as Gaussian, the overlap

as a function of distance from the aperture is shown in Figure 3.8. Higher than

∼ 20 m above the aperture adjacent feed horns see almost non-overlapping regions

of the atmosphere, which means that atmospheric fluctuations in the timestreams of

detectors across the focal plane are uncorrelated, and the common mode will capture

only large scale fluctuations, of angular diameter > 20◦.

3.3 Demodulating the Half-Wave Plate

ABS employs a technique unique among ground-based telescopes to effectively see

through the atmosphere. It uses a continuously rotating half-wave plate (HWP).

This takes advantage of the fact that the atmosphere produces an unpolarized signal.

As described in Chapter 2, the effect of a HWP on linearly polarized incident radiation
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Figure 3.8: Percent overlap of beams from adjacent feed horns within the same
pod of ABS. It takes into account both the finite aperture size and beamwidth by
convolving a solid disk of angular size depending on the distance from the aperture,
with a Gaussian beam. By 20 m above the aperture the overlap has fallen to 2.5%,
meaning that the feeds are largely decoupled, and any common mode is due to large
scale fluctuation in the atmosphere. The asymptotic overlap is 0.4%.

is to reflect the direction of polarization across the fast axis. For a HWP spinning

at frequency f , the constant incoming polarization is modulated at 4f (Sec. 2.1.1).

The ABS HWP rotates at ∼ 2.5 Hz, bringing the modulation frequency up to ∼ 10

Hz, well above the atmospheric knee frequency.

All of the celestial polarization signal is in the 4f peak in the timestream’s power

spectrum. The process of demodulation was adapted from that of the Dicke receiver

[12] to extract all of the I, Q and U signals, by Akito Kusaka and Tom Essinger-

Hileman, and is described briefly below. The modulated timestream can be written

as

dm = Re[m(t){Q(t) + iU(t)}] + T̄ + A(φ),

where T̄ denotes the background noise, including the 1/f atmospheric noise and the

white detector noise, φ is the HWP angular position, and A(φ) is independent of input,

representing the signal coming directly from the HWP including thermal emission and

the effects of the mechanical system on the detectors. The first term contains all of

the information, and m(t) = e2iπfm with fm = 4fhwp. The timestream represents the

projection of the polarization onto the orientation of the TES in question. The first
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step is subtracting off A(φ), which is determined by binning the entire timestream

by HWP encoder values, and low-pass filtering in HWP frequency space to include

only the first ten harmonics. The next step involves multiplying the result with the

complex conjugate of the modulation function, e−2iπfm , yielding

dd(t) =
1

2

{
Q(t) + cos(4πfm)Q(t) + sin(4πfm)U(t) + 2 cos(2πfm)T̄

}
+
i

2

{
U(t)− cos(4πfm)U(t) + sin(4πfm)Q(t) + 2 sin(2πfm)T̄

}
. (3.7)

Effectively this makes two copies of the polarization signal, shifting one to 2fm

and the other to its original frequency, prior to its being modulated. In addition,

this shifts the low frequency atmospheric noise up to the modulation frequency, so

that the noise floor at low frequencies is due to the detector white noise (see Fig 3.9).

Finally, this stream can be low-passed to recover the demodulated data, which is of

the form

dlpd (t) =
1

2
Q(t) +

i

2
U(t) + T̄w

where T̄w is the white noise floor and has both a real and imaginary component. An

example of a demodulated timestream is shown in Figure 3.10.

60



Figure 3.9: Power spectra of each step of the demodulation process. The y−axes all
have the same units. The top plot shows the raw timestream power spectrum, with
the 4f modulation frequency highlighted by the red dashed line. The second plot
shows the band-passed data, with band-width 4 Hz. This width is large enough to
ensure that the Q and U signals are not modified by the filter, and narrow enough
to exclude the 3rd and 5th harmonics. The final plot shows the spectra of the real
(Q) and imaginary (U) components of the demodulated and subsequently low-passed
data.
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Figure 3.10: Demodulated Q abd U timestreams.

3.4 Optical Efficiencies

The optical efficiency of each TES is determined by measuring targets with known

temperatures and comparing the expected to measured responses of each detector.

The targets used for ABS include Jupiter and Venus, and so-called ‘sky dips,’ mea-

surements of the variation in atmospheric brightness while scanning in elevation. The

latter method takes advantage of the variation of the loading as a function of elevation

angle (Sec. 3.2). The temperatures of the planets are known to high accuracy, how-

ever due to their small size not all detectors can scan across the planet at once. On

the other hand, the sky dips calibrate all detectors at once, but the Rayleigh-Jeans

temperature of the atmosphere, which is dependent on PWV, is not as accurately

known, and can vary across the array and over the timestream of the sky dip due to
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turbulence (Sec. 3.2.1). Combining the advantages of these two types of targets, we

use sky dips to get the relative optical efficiencies of all the detectors, and measure

the absolute efficiencies of a few select detectors for over all scaling.

3.4.1 Relative Optical Efficiencies from Sky Dips

Determining the relative efficiencies from sky dips involves 3 steps. In the first step,

the peak to peak amplitude in pW, called the response Rmeas, is determined for each

detector. The detector responses depend on both elevation angle and atmospheric

brightness, in addition to the efficiencies. The next two steps seek to divide out

the dependence of the first two factors and isolate the relative efficiencies. Since

the temperature of the atmosphere, correlated with PWV, is not very accurately

known, we calculate the expected response, R10K(θel), using Eq. 3.6 assuming a 10

K sky at zenith and a bandwidth of 30 GHz. The elevation angles were derived

from a combination of the boresight pointing model and the detector offsets from the

boresight by Srinivasan Raghunathan.

The top of the array (Fig. 2.7), which looks lower on the sky than the boresight,

has a larger expected response than the bottom. The second step involves taking the

ratio for detector i,

ε10K,i =
Rmeas,i(θel)

R10K,i(θel)
, (3.8)

which should be independent of elevation. We don’t know the PWV accurately, but

for this calculation we assume that it is the same for all detectors at any given time,

and so the ratios ε10K,i/ε10K,j do not depend on PWV. We define a reference efficiency

εref for each sky dip as the average of the efficiencies of the most stable detectors over

the season. Details of the reference set follow. The reference efficiency should have

the same PWV dependence as each individual detector, and so the final step is to
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obtain the relative efficiencies

εrel,i =
ε10K,i

εref

. (3.9)

Figure 3.11 shows an example of a typical sky dip timestream. Their peak to

peak amplitude in elevation is 5◦, and the period is ∼ 24 seconds (corresponding to

∼ 0.04 Hz). The duration is ∼ 2.5 minutes, completing between 6 and 7 full periods.

The boresight central elevation angle for each sky dip ranges from 45◦ to 85◦. The

expected responses for a 10 K sky assuming 100% transmission vary from 0.4 pW at

the highest elevation offset to 1.2 pW at the lowest.

To determine the detector response, the atmospheric temperature model (Eq. 3.6)

is calculated the elevation timestream and is linearly fit to the detector timestream.

The model takes the form

Wexp = 2kTRJ(θel(t))∆f, (3.10)

TRJ(θel) = Tatm(1− e−τ sec(90◦−θel)), (3.11)

where Tatm and optical depth τ are chosen to be 250 K and 0.04, respectively, so that

TRJ(zenith) = 10 K at central frequency 145 GHz. The first order coefficient of the

fit represents the efficiency, and when multiplied by the peak to peak amplitude of

the model yields the measured power (Fig 3.11). The first three periods of each sky

dip timestream are discarded in the fit to allow for the temperature of the focal plane

to equilibrate. If there were more ‘dips’ per sky dip file, this would be equivalent

to measuring the power in the 0.04 Hz peak of the power spectrum. To assess the

goodness of the fit, the figure of merit is defined as the root mean squared of the

difference between the data and the fitted model. The figure of merit has units of

power, and typical values are ∼ 1.5 × 10−14 W. In this case a lower value implies a

better fit. The figure of merit for the pictured sky dip in Figure 3.11 is 1.4 × 10−14
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W. The top left plots in Figures 3.12 and 3.13 show the responses Rmeas and the

efficiencies ε10K, respectively, of all detectors over the entire season.

Figure 3.11: Example of a detector’s response to a sky dip. The timestream is shown
in blue, and the model discarding the first three periods (∼ 75 s) in red. The half-
wave plate was spinning when these data were taken. This causes oscillations which
are too high frequency to be distinguished here, but which appear as a thickening of
the timestream. There is little atmospheric drift during this sky dip, and fitting for it
gives < 0.5% correction to the linear fit. The figure of merit (see text) is 1.4× 10−14

W, significantly lower than the cut-off at 3.0× 10−14 W.

Due to fabrication differences between the top and bottom halves of the detectors,

the two groups are compared to different references, εref,top and εref,bottom, and are

scaled to their absolute efficiencies separately. The groups are clearly visible in the

figures: detectors 81-320 are in the bottom, and 1-80 and 321-480 are in the top. The

bottom detectors have a lower response despite seeing a hotter sky due to their shifted

band, in part because they are looking higher in the sky. The efficiencies shown in
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Figure 3.13 account for the different elevations, and the detectors in the bottom half

can be seen to have a higher variance in efficiencies than the top half, discussed in

more detail below.

Obtaining εref,top and εref,bottom involved two iterations of cuts on sky dip files and

detectors. There were 636 sky dips taken during the first season. Of those, the ones

taken when the PWV was above 3 mm were excluded from the analysis to ensure that

the loading on the detectors was not too high. Those taken when central boresight

elevation was above 65◦ were also excluded because the amplitude of the signal from

the sky dips at higher elevations is too small to be reliable. There were 336 sky dips

within these cuts. In addition, sky dips during which a large number of detectors

were not biased properly were also cut, as were those with a figure of merit greater

than 2.0× 10−14 W. In the first iteration, 206 sky dips remained.

The first iterations of εref,top and εref,bottom are obtained by averaging the responses

of the most stable detectors in their respective groups. They are defined as detectors

such that min(ε10K,bottom) > 0.1%, min(ε10K,top) > 1%, and 10% < median(ε10K,all) <

100%. Figures 3.12 and 3.13 show the detector responses and efficiencies, respectively,

of the 3 steps in the selection process to obtain the reference efficiencies. The latter

also shows the reference efficiencies over time of the two halves of the focal plane.

The second iteration of cuts involves looking at the relative efficiencies of each

detector, obtained using Eq. 3.9. The results are shown in Figure 3.14. At this

stage the elevation and PWV dependence has been divided out, and so the variations

visible in each detector trace, represented as horizontal lines, are the uncertainties

in the detector efficiencies. The final cut was made on sky dips during which one or

more detectors had unusually low (5%) relative efficiency, leaving 154 sky dips in the

final analysis.

Before calculating the relative efficiencies εrel, the reference efficiencies are explored

in more details. As expected, there is a strong correlation between the reference
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Figure 3.12: Detector responses over the 3 cut steps to determine the reference.
The y-axes enumerate the detectors, and the x-axes enumerate the sky dip files in
chronological order. Top left includes all detectors, and all sky dips taken when PWV
< 3.0 mm and central boresight elevation < 65◦. Detectors which were not working or
which unlocked appear as white and black, respectively. The top and bottom batches
are clearly visible: detectors 81-320 are bottom, and 1-80 and 321-480 are top. Going
to the top right plot, the y-axis is the same, but only sky dips with a low figure of
merit and those with enough working detectors are included. There are 206 such sky
dips. The final plot includes the same sky dip files, but only the detectors that were
stable over all sky dips are displayed. There are 241 stable detectors, 103 from the
top and 138 from the bottom.
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Figure 3.13: Detector efficiencies ε10K using a 10 K sky model, over the same 3 cut
steps as Fig. 3.12. The variation in the efficiencies over the sky dips is primarily due
to variations in PWV.

efficiencies and PWV (Fig 3.15a). Further, the bottom half has a stronger dependence

on PWV due to its shifted band pass, as anticipated in Figure 3.3. In addition to a

PWV dependence there is also a dependence of efficiency on the azimuth position of

the telescope, as shown in Figure 3.15b. On the y-axis are the reference efficiencies

corrected for their PWV dependence by dividing by the best fit linear model shown
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Figure 3.14: Relative optical efficiencies εrel for the 241 detectors within the response
cuts. The dependence on average PWV is divided out when top and bottom halves are
compared to their respective references. The plot on the left shows all 206 sky dips,
and on the right the sky dips with anomalies, visible as vertical lines, are removed,
leaving 154 sky dips. Each horizontal line represents a detector’s relative efficiency εrel

over time. The detectors are grouped by column, and detectors in the same column
are physically close to each other and observe adjacent patches of sky. The fact that
the vertical striations still visible in the right plot seem to be correlated in groups,
i.e. 200-220 follow a similar pattern and 221-241 follow a different pattern, suggests
that the variance is due to variations of PWV across the focal plane during a single
sky dip.

in Figure 3.15a. The azimuth dependence could be in part due to different ground

pick up, for example from the Cerro Toco peak or the ACT ground screen.

To determine if there were any changes in the efficiencies over the course of the

season, we look at the reference efficiencies after being corrected for both PWV and

azimuth position dependence, over time (Fig. 3.16). Although the scatter is signif-

icant, 17% for the top half and 23% for the bottom, the Figure 3.16b in particular

reveals that the efficiencies measured in the three time periods outlined in Table 3.4

follow different statistics. Changes in focal plane servo temperature were found to co-

incide with these changes in efficiency statistics (Fig. 3.17). Field tests are currently

planned to further investigate this dependency by taking sky dip data while varying

the focal plane servo temperature.
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a.

b.

Figure 3.15: Top: correlation between reference efficiency εref and PWV. As ex-
pected, higher PWV leads to higher response in detectors, and when compared to
the same 10 K sky, they appear to have higher efficiency. The bottom half shown
in red, which sees more of the 183 GHz water line, has a stronger dependence on
PWV. Bottom: Correlation between reference efficiencies and azimuth position. The
reference efficiencies are corrected for their PWV dependence by dividing out the best
fit line in a.
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a.

b.

Figure 3.16: a. Reference efficiencies, with dependence on PWV and azimuth po-
sition divided out, of top and bottom halves during first season. Days 136 - 158
(March 15 - June 6) ABS was not observing due to long term maintenance. Days 162
- 225 (June 10 - August 12) ABS was running but no sky dips were taken. b. Three
different efficiency statistics are clearly visible.

The relative efficiencies of each detector were obtained from their traces over the

154 final sky dips in two steps, mainly to assure that detectors with good efficiencies
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Figure 3.17: Focal plane mean temperature during sky dip data acquisition. The high
temperature outliers indicate that the temperature broke through the servo during
the sky dips.

but which did not work for more than half of the sky dips were assigned accurate

values of efficiency. The final values are shown in Figure 3.18 as a histogram and

by detector number. The overall scaling of the values is arbitrary, as is the relative

scaling of the top to the bottom detectors. They are each set so that their respective

reference is 1. As is visible in the second plot, the ‘top’ detectors (0-88 and 352-528)

Period I Period II Period III
April 14 - May 15 June 6 - June 10 August 11 - December 29

ε∗ref(top half) 0.99± 0.16 1.03± 0.13 1.01± 0.13

ε∗ref(bottom half) 1.06± 0.18 0.86± 0.10 0.95± 0.22

Table 3.4: Mean reference efficiencies for each of the three periods of sky dips; the star
indicates that the PWV and azimuth dependence has been divided out. Although
the scatter in the top half within each period is only slightly better than the bottom
half, the mean stays stable over the first season to within a few percent, whereas the
bottom half varies by around 20%.
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have much tighter distribution of efficiencies, and the bottom detectors are much

more scattered.

a.

b.

Figure 3.18: Detector optical efficiencies as determined by sky dips. The values
at zero represent TESes which were working for fewer than 10 sky dips throughout
the season. The distribution of the top half has a clear gap between working and
non-working detectors, whereas the bottom half has a family of detectors with low
but non-zero efficiencies. A cut-off of 0.2 was imposed on relative optical efficiency,
and non-working or low-efficiency detectors are discarded in all subsequent analysis.
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3.4.2 Comparison of Sky Dips with other measurements.

Relative optical efficiencies were also calculated using an entirely different method, by

measuring the detector response to a coarsely spaced (1”) wire grid polarizer placed

at the top of the baffle. The slightly polarized signal produced by the coarse grid,

after being modulated by the spinning half-wave plate, produced a response in the

detectors modulated at 4f . Similarly to the sky dips, the absolute response due to

the wire grid was not known accurately, but it was assumed to be the same for all

detectors within each of the top and bottom halves to extract the relative efficiencies.

Figure 3.19: Comparison of relative optical efficiencies calculated from sky dips and
from wire grid measurements. The top and bottom halves are separately normalized
to have a mean of 1. The agreement of the measurements considering only the
detectors with relative efficiencies higher than 0.2 is within 16% for the top half and
within 15% for the bottom.

The comparison of the sky dip efficiencies and the wire grid efficiencies is shown

in Figure 3.19. Agreement between the numbers is determined by the linearity of

the data. The overall scaling factor is arbitray, and the top and bottom halves are

separately normalized to have a mean of one. The agreement of the measurements
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for detectors with relative efficiency higher than 0.2 is within 16% for the top half

and within 15% for the bottom.
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Chapter 4

Data Processing

Analyzing the data obtained from the telescope to produce maps is a considerable

task. This chapter describes the steps from raw ABS data to preliminary maps of the

primary CMB patch, Field A, for a subset of the 2012 season of observation, during

which ABS operation was stable. We focus on a roughly one month reference period,

days 284 - 312 of the year corresponding to October 11 - November 7 (Tab. 3.1 and

Fig. 3.5) which includes a total of 236 hours of observation prior to data selection of

the 2940 deg2 Field A (Fig 4.1).

The first step of the data analysis is to select the fraction of the data that can be

used for map making, discarding defective data and identifying pathological behavior

of individual detectors. The design of algorithms to perform these cuts requires an

understanding of the data properties and all possible defects. Section 4.1 describes the

first iteration of data selection algorithms, developed by Akito Kusaka, and how they

affect the sensitivity of the focal plane. The selection criteria are conservative, cutting

the observation time down to 135 hours. We also discuss possible improvements for

future iterations. Section 4.2 shows estimates of the current and projected sensitivity

of ABS in multipole ` space. Finally, Section 4.3 shows the preliminary polarization

maps made using the current set of data selection criteria.
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Figure 4.1: Top: The three ABS observation fields shown in equatorial coordinates,
overplotted with our galaxy for reference. The primary observation field is Field A,
chosen for its low level of contamination from galactic dust emission. Field D, located
at the same right ascension as Field B at a declination of −40◦, is the lowest priority
field and is not shown here. Bottom: Detector hit count map for Field A during the
reference period, including the cuts outlined in Section 4.1. The hitcount represents
the number of samples over all detectors observing a particular pixel, where the pixel
size is 5′ and the data acquisition rate is 200 Hz. The total area of the field is 2940
deg2. Its shape is distorted due to the projection from spherical coordinates onto the
plane, appearing slightly bigger than it is on the sky. More observations are needed
to fill in the field.
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4.1 Data Selection

The first step of data selection is detector selection, in which faulty detectors are cut

for the entire period of interest. This class of detectors includes those with faulty

readout circuits, those with working readout circuits but which are not optically

coupled to the sky, and those which are otherwise working fine but have low optical

efficiency. The first group is identified by a flat output, and the other two by doing

optical tests such as sky dips (Fig. 3.18) and sensitivity to HWP modulation (Sec.

3.3) and wire grid polarization (Sec. 3.4.2). Of the 480 live detectors in the ABS

focal plane, 401 pass these cuts, or about 83%.

Cuts on timestreams fall in three categories. The first cut is on full constant

elevation scans (CESes), the second is on individual detector timestreams within a

CES, and the third is on portions of detector timestreams. The first type of cut

determines the overall observation time, and the other two determine the effective

number of detectors, Deff , defined as the sum of the fraction of time that each

detector passed the data selection. The upper bound from detector cuts only is

Deff=401, and timestream cuts will further decrease this number.

4.1.1 Masking glitches

The first cut we apply is to mask portions of detector timestreams. Data timestreams

which are otherwise perfectly healthy sometimes have ‘glitches’ which need to be

masked. Glitches are spikes in the data ranging in length from a single sample to

∼ 10 samples, or 0.05 s. Effective glitch identification over the HWP signal, detector

noise, and atmospheric drift, and efficient masking, are key elements in the data

filtering process. Three types of glitches have been identified. The first is a single

sample glitch, the second is a 2 sample glitch with a ring of ∼ 4 more samples, and

the third is a sharp increase in signal with a ∼ 10 sample decay. Because of the decay
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time, the last type of glitch is attributed to a physical spike in power on the TES

island, likely due to cosmic rays hitting it directly. The first two are attributed to

electrical glitches in the readout circuit, mainly because of their unphysically short

duration of ∼ 10 ms.

The current glitch finding program identifies glitches by first subtracting the HWP

shape (A(φ)) from the timestream in the same way as the first step of the demodula-

tion process (Sec. 3.3), and then by splitting the ∼ 1 hour timestream into less than

one second sections to minimize the atmospheric drift. After these steps the dominant

variation in signal is due to detector noise. Within each section the data are averaged

in two ways, each targeting a characteristic glitch size. For identifying the 1 and

2 sample glitches, the data in each eighth second (25 sample) section are averaged

for every adjacent pair and compared to the average of all data within that section.

For the 10 sample glitches, the data in each quarter second (50 sample) section are

averaged for every set of 10 adjacent samples and compared to the average of all data

within that section. A sample is flagged as a short or long glitch if its pairwise or

10-sample average, respectively, deviates by more than 10σ from the section baseline.

In addition to all the flagged samples, the glitch mask masks an additional 10 samples

at the beginning and end of each short glitch and 20 samples at the beginning and

end of each long glitch. The glitches are masked prior to all other data analysis.

Jumps in the data are also flagged by the glitch finder. Jumps differ from glitches

in that the DC level of the data before and after a glitch is the same, whereas for a

jump it is different, with the level shift sometimes up to several orders of magnitude

greater than the HWP signal. Although the glitch finder flags the jump and masks

a section of the timestream before and after, it does not reset the DC level, and

so effectively the jump is still there. The jump finding algorithm is currently in

development and so there is no cut criterion related directly to jumps yet. However,
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indirectly they affect some of the other criteria discussed below, and most if not all

timestreams featuring jumps are cut by at least one of the others.

Figure 4.2: An example of a jump in the raw timestream. The values of raw station-
arity, kurtosis and skewness for this timestream are 2.66, 21,000, and 83, respectively,
well above the cutoffs listed in Table 4.1.

4.1.2 Full Timestream Cuts

Cuts on the individual detector timestreams are done by looking at the statistical

properties of both the raw and demodulated glitch-masked data. The full set of the

criteria described in this section is listed in Table 4.1 along with the current cutoff

limits. We expect the detector noise to be white; however, in the raw timestream

the HWP signal and atmospheric drift dominate over the detector noise statistics

on short and long timescales, respectively. To isolate the detector noise, first the

glitch mask is applied, then the HWP shape A(φ) is removed, and then the DC

offset is subtracted from each 50 sample interval, eliminating all features below 4 Hz
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including the atmosphere. The stationarity is determined by calculating the rms of

the data for each 50 second interval and comparing to the average over all 50 second

intervals. It is a dimensionless quantity with zero signifying perfect agreement among

all intervals of that timestream. The skewness and kurtosis are calculated for the full

CES timestream at once.

In addition to noise properties, there are two more criteria imposed on the raw

timestream. The first is related to the HWP signal. A reference HWP DC shape is cal-

culated for each detector by averaging the HWP structure obtained from timestreams

taken at all times during the 236 hour reference period when the PWV was 1 mm, and

the shape of each timestream is compared to the reference by taking the average of

the ratio. The second is related to the glitches - timestreams which have an excessive

number of glitches are cut entirely.

A jump in the timestream manifests itself as a large non-stationarity parameter

and, depending on its location within the 50 second interval, as large skewness and

kurtosis. To see this consider the case where the jump is close to the middle of

the interval. Subtracting the mean offset would place roughly an equal number of

samples at the same level above and below zero, preserving the symmetry of the data

and not affecting the skewness. However these points far above and below the rest

of the distribution would lengthen its tails and increase the kurtosis into the tens of

thousands. Conversely, if the jump is near the edge of an interval, subtracting the

mean would place most of the samples very close to zero and not affect the kurtosis

as much, but the few samples which are displaced are all in the same direction, and

would increase the skewness into the hundreds. Figure 4.2 shows an example of a

jump in the timestream, with a stationarity of 2.66, kurtosis of 21,000, a skewness of

83. Generally, the data jump to the new DC level over the course of 2 samples, and

so even if the jump happens to land on the boundary between two intervals, it will

affect the DC offset removal of both intervals and still be flagged.
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The cuts on the raw timestream based on non-stationarity, skewness, kurtosis

and HWP shape are very loose: [0, 0.60], [−3, 3], [0, 1000], and [0.1, 3], respectively.

They are meant to identify only severely flawed timestreams, in particular ones with

jumps, before they get demodulated. This is important because the band-passing

step of the demodulation process does not filter out the in-band signal introduced

by the jump. It does, however, filter out the high frequency ringing, wiping out all

non-Gaussianities in the noise. Thus even a timestream with a jump or unmasked

glitch will still appear Gaussian when demodulated, and testing for Gaussianity is

not a sufficient selection criteria.

The criteria used to identify pathological data in the demodulated timestream are

the white noise amplitude and the 1/f knee frequency (Sec. 3.3), and a χ2 fit of the

power spectrum to a simple white-noise-plus-1/f model, P (f) = A2(1 + (f/fknee)
k).

The parameters A, fknee and k are determined, and the (reduced) χ2 is the goodness

of fit. It is calculated separately for frequencies above and below 1 Hz, and in the

latter case the scan frequency and its harmonics are removed prior to the fit.

4.1.3 Constant Elevation Scan Criteria

Once the flagged timestreams are removed, the final cut is on entire CESes. Those

with fewer than 150 working detectors are cut, as well as those whose duration is

less than 1000 seconds, or about 17 minutes. The latter only cuts 2 hours from

the reference period observation time, reducing it to 234 hours, whereas the former

reduces it to 135 hours. Although this threshold cuts the observation time almost in

half, it only cuts about 10% of the data by time. In practice, the cut on CES duration

is done first and short CESes are not processed at all, hence this cut is defined as cut

number 0 in Table 4.1.
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Cut number Cut definition

0 CES duration > 1000 s
1 HWP shape ratio to reference ≥ 0.1
2 HWP shape ratio to reference ≤ 3.0
3 Raw stationarity ≤ 0.6
4 Raw skewness ≥ −3
5 Raw skewness ≤ 3
6 Raw kurtosis ≤ 1000
7 No. 2 sample glitches ≤ 100
8 No. 10 sample glitches ≤ 200
9 Demodulated white noise amplitude ≥ 5 aW

√
s

10 Demodulated white noise amplitude ≤ 100 aW
√
s

11 Demodulated χ2 above 1 Hz ≤ 3
12 Demodulated χ2 below 1 Hz ≤ 5
13 Demodulated knee frequency ≤ 0.04 Hz

Table 4.1: List of the first iteration of data selection criteria for the reference period
October 11 - November 7. The numbers in the left column are used throughout this
chapter to refer to particular cuts.

4.1.4 Selection Statistics

This first iteration of cuts was determined by looking at the array-wide statistics

for each criterion and cutting the tails of the distributions by eye (Fig. 4.3). The

purpose of this pass is twofold. It is meant to test the accuracy of the algorithms

in flagging the intended defects and to provide a baseline on which to improve with

further iterations. In this section the baseline is determined, and the cuts which result

in the greatest decrease in effective detector number Deff are identified.

Figure 4.4 shows the time efficiency for each criterion separately for every detector

in the focal plane. Time efficiency is defined relative to the 401 detectors within the

detector cuts, and the remaining 127 squares, representing the 79 defective detectors

and the 48 dark channels, are displayed in black in the top left plot. Defined in this

way, the time efficiency is related to Deff by a factor of 401. Imposing all of the

criteria yields a time efficiency of 42.3%, or Deff = 170. The criteria which reduce

Deff the most are the cutoffs on raw kurtosis and number of glitches, cut numbers
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6, 7, and 8 in Table 4.1. The detectors in high numbered rows and columns feature

a large number of glitches for reasons not fully understood yet.

Array Sensitivity

The effective detector number Deff is a measure of how sensitive the focal plane

is, given that all detectors are equally sensitive. In fact for ABS this is not the

case, and so a more consistent measure needs to be considered. In order to define

detector sensitivity, we first introduce the noise equivalent power (NEP) of a detector,

defined as the signal power that gives a signal-to-noise ratio of one in a 1 Hz output

bandwidth. It is effectively the amplitude of the detector white noise after the raw

DAC counts are converted to Watts, and it is measured in units of W/
√
Hz[39].

The sensitivity of a detector is quantified by the noise equivalent temperature

(NET), which is the temperature fluctuation that gives signal-to-noise ratio of one

after integrating over one second. As such, a lower NET indicates a more sensitive

detector. It can be calculated from the NEP using

NET =
NEP

εabs
dP
dT

√
2
, (4.1)

where εabs is the optical efficiency of the detector (Sec. 3.4) and εabsdP/dT is the

conversion factor between temperature observed by and power deposited onto the

detector. The units of NET are K
√
s, and the factor of

√
2 is there to convert 1/

√
Hz

to
√
s, since an output bandwidth of 1 Hz is equivalent to half a second of integration

time. The NETs of the ABS detectors were calculated by John Appel [3] and are

shown in Figure 4.5. From now on si will be used to denote the NET of detector i,

and the total array sensitivity is determined by

s =

(∑
i

1

s2
i

)−1/2

. (4.2)
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Figure 4.3: Distributions of parameters on which the cuts are made, over CESes
during Field A observations in the reference period (see text). The red dashed lines
represents the first pass at the cut level.
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Figure 4.4: Time efficiency of each detector, for each cut individually. A detector is
represented by a square in the grid, The cuts applied in each frame are indicated by
the number(s) in square brackets in the titles, and correspond to the cuts in Table 4.1.
Panels [7] and [8] capture the large number of glitches in the detectors which have a
high number row and column. The reasons for these glitches is not fully understood.
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Figure 4.5: Noise equivalent temperature (NET) of all ABS detectors. Black squares
represent dark and otherwise not working detectors, and white squares detectors
whose NET is greater than 1700 µK

√
s. Most of the latter are in columns 4 − 15,

which are detectors in the ‘bottom’ half of the focal plane as in Figure 2.7.

We define the effective array sensitivity for period of observation time tobs as

seff =

(∑
i

ti
s2
i tobs

)−1/2

, (4.3)

where ti is the total time during which detector i passes the selection criteria. The

effective sensitivity seff can never be less than s, and matches it only when ti = tobs for

all i. The sensitivity of the ABS focal plane including all optically coupled detectors

is 30 µK
√
s. Cutting detectors with low optical efficiencies increases this by less than

∼ 0.1%. The effect of each selection criterion considered separately on the focal plane

effective sensitivity is shown in Table 4.2.
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Selection Criteria Sensitivity (µK
√
s)

Full array 30.5(67)
Relative optical efficiency εrel ≥ 0.2 30.5(71)

HWP shape ratio to reference≥ 0.1 31.2
HWP shape ratio to reference ≤ 3.0 30.6

Raw stationarity ≤ 0.6 33.1
Raw skewness ≥ −3 32.5
Raw skewness ≤ 3 32.4

Raw kurtosis ≤ 1000 36
No. 2 sample glitches ≤ 100 34
No. 10 sample glitches ≤ 200 35

Demodulated white noise amplitude ≥ 5 30.7
Demodulated white noise amplitude ≤ 100 30.9

χ2 above 1Hz ≤ 3 31.8
χ2 below 1Hz ≤ 5 31.8

Demodulated knee frequency≤ 0.04 33.8

All cuts 48.4

Table 4.2: Effective array sensitivity for various detector and data cuts. The sen-
sitivity of the full array is calculated using NETs measured by John Appel. All the
other effective array sensitivities impose a relative optical efficiency cut-off of 0.2 (Sec.
3.4). The biggest hits to the sensitivity come from the kurtosis and glitch criteria.

4.1.5 Possibilities for Future Selection Criteria

As described above, the current limits on stationarity, skewness and kurtosis are

primarily in place to flag jumps and glitches, and end up cutting a lot of healthy data

in the process. Having a cut criterion directly for jumps would allow us to relax these

limits to include more data without the the chance of letting a jump slip through.

A jump-finding algorithm is currently in development, and once that is implemented

the proper limits to place on the stationarity, skewness, and kurtosis in the absence

of jumps will be determined.

There is an of over-counting of glitches with the current glitch finding algorithm,

primarily due to large amplitude single-sample glitches. The algorithm was written

before the single sample glitches were discovered, and was meant to target the gener-

ally much smaller amplitude 2- and 10- sample glitches. If a glitch is big enough, it
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affects the mean offset removal of an entire 25 (50) sample interval in the short (long)

glitch finder, and when compared to zero, all 25 (50) samples are flagged as glitches.

This artifact is visible in the distributions of the number of glitches as regular spikes

every 25 (50) samples (Fig. 4.6). Four or more large single-sample glitches in a CES

will cause it to be flagged as over the current limits of both the 2- and 10-sample

criteria, indicating that the ∼ 20% of the data which is cut by each of these limits is

largely overlapping. A new iteration of the glitch finding algorithm is currently being

implemented by Akito Kusaka which removes the median offset as opposed to the

mean offset. In this way a glitch of any size would not significantly affect the offset,

and the mask would be applied properly to the glitch and not to the entire interval.

This change is expected to recover at least 75% of the data cut due to glitches.

4.2 Sensitivity

As mentioned in Chapter 1, the primary goal of ABS is to probe the tensor-to-scalar

ratio of the primordial perturbations, r. The current limit on r from CMB data only

is 0.12 from Planck[33]. In this section we estimate the sensitivity to r which ABS

will be able to achieve, from observations during the one month reference period,

October 10 - November 7, 2012. Based on these results, estimates of the minimum r

for the entire first season and projections including the second season are made.

Consider a single detector i with sensitivity si observing temperature fluctuations

〈δT 〉 over a patch of sky. For each pixel, the temperature has contributions from both

the CMB and the noise,

δTpix = δTCMB
pix + δT noise

pix . (4.4)
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Figure 4.6: Histograms of the number of glitches per constant elevation scan (CES),
zoomed in on the y-axis so that the features are distinguishable. The regular peaks are
an artifact of the first iteration of the glitch finding algorithm, which counts one large
single-sample glitch as 25 2-sample glitches and 50 10-sample glitches. A timestream
with 4 or more such single-sample glitches is cut entirely due to this artifact.

90



The noise variance is assumed to be uncorrelated for different pixels, and follows the

relation

〈δT noise
pix T noise

pix′ 〉 = σ2
pix,iδpix,pix′ , (4.5)

where σpix,i = si/
√
tpix,i and tpix,i is the time detector i spent observing the pixel.

In other words, σpix,i represents the temperature fluctuation of the pixel that can be

observed with signal-to-noise ratio of unity after 1 second of observation with detector

i. It is convenient to work with the weight of the pixel, wpix,i ≡ σ−2
pix,i. The weight per

solid angle, wpix,i/Ωpix, is a measure of noise that is independent of pixel size Ωpix,

allowing for comparison among experiments with varying beam sizes.

To generalize this result to include multiple detectors in the focal plane, one can

simply add the weights for each detector for each pixel,

w =
∑
pix

wpix =
∑
pix

(∑
i

wpix,i

)
. (4.6)

For observation strategies like the one ABS uses, which observe Q and U polariza-

tions equally, the weight for polarization is obtained from the total weight by taking

wQ,U = w/2. Figure 4.7 shows the weight map of Field A observation. Summing

over all pixels gives a weight of (0.057µK)−2, and an average weight per solid angle

of (3.13µK)−2 deg−2. The average weights per solid angle for polarization are then

wQ,U = (6.26µK)−2deg−2 = (376µK)−2arcmin−2.

With the weight map in hand we can estimate how well ABS will be able to

probe r using the Knox equation [23], which gives the expected error per multipole

coefficient C`:

∆C`
C`

=

√
2

2`+ 1

(
1 +

W`

wC`

)
. (4.7)
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Figure 4.7: The weighted detector hit count for Field A observations during the
reference period. The total area is 2940 deg2 and the weight per solid angle is
(3.13µK)−2deg−2. This gives a polarization weight of (6.26µK)−2deg−2. Compare
with the raw hit count in Figure 4.1.

As expected, a larger weight w will result in smaller error bars. Here, W` is called

the window function, which is the analog of the Fourier Transform in multipole pace

of the beam profile. For a Gaussian beam with full width at half-maximum θFWHM,

P (θ) = P0 exp(−θ2/2σ2
b ) where σb = θFWHM/

√
8 ln 2. In this case window function is

also Gaussian[44, 29], taking the form

W` = e−[`(`+1)]2σ2
b . (4.8)

Narrow beams will have a larger window function for higher `, and will thus be more

sensitive to smaller scales. In effect W` is a low-pass filter, representing the smearing
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done by a finite beam on scales smaller than its characteristic size. The ABS beam

has θFWHM = 0.58◦ as calculated from Jupiter and Tau A observations by Srinivasan

Raghunathan and Jon Sievers. As can be seen from its window function (Fig. 4.8),

ABS is sensitive to scales ` <∼ 250.

The second term in Eq. 4.7, quantifies the error from instrument noise. Even

with a perfect instrument however, the error on measurements of C` will not be zero.

This is because each C` represents an average over a finite number (2` + 1) of a`m

coefficients (Sec. 1.1.2), and as such there will always be sample variance. In the

context of CMB power spectra, this effect is known as cosmic variance. The error

due to cosmic variance is largest for small `, and decreases as 1/
√
`. The cosmic

variance term becomes important for drawing conclusions from the power spectra

about cosmological implications, and in particular inflation. For describing ABS’s

sensitivity to the observed BB spectrum, which the remainer of this section does, the

relevant term is the second one. In the case where only a fraction of the sky, fsky, is

being observed with a Gaussian beam, the uncertainty becomes

∆C` =

√
2

(2`+ 1)fsky

(
we[`(`+1)]2σ2

b

)−1
. (4.9)

Figures 4.8, 4.9, and 4.10 show the estimated binned errors for three different

weights. The first is the weight achieved with the current set of selection criteria.

The second is the weight calculated for the same reference period, assuming that

80% of the data can be recovered. The final one assumes the same sensitivity as the

second, but for a full year of observation time. The power spectra are simulations

from the Code for Anisotropies in the Microwave Background1 (CAMB) using the

parameters most favored by Planck. With the weights ABS is expected to achieve,

the ∆C`s are much bigger than even CEE
` . Binning them over a set of `s to reduces

1Available on NASA’s Legacy Archive for Microwave Background Data Analysis (LAMBDA).
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the overall uncertainty of the bin to

∆Cbin =

(
1

∆C2
`

)−1/2

. (4.10)

Bin sizes in the figures are chosen such that as many significant detection bins are

displayed as possible.

Figure 4.8: The sensitivity of ABS for the one month reference period and the
first iteration of cuts. Shown are the EE power spectrum and the BB spectra for
two different reference values of the tensor to scalar ratio r, for a ΛCDM cosmology
with the most recent Planck parameters. The estimated binned error for the EE
spectrum is shown in light red. The effective focal plane sensitivity is 48.5 µK

√
s and

the average weight over the field is (6.26 µK)−2deg−2. With the current cuts for the
reference period, ABS should be able to detect the E modes, although it will not be
sensitive enough to discern the features of the power spectrum. The window function
is calculated assuming a Gaussian beam with full width at half maximum of 0.58◦.
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Figure 4.9: Similar plot to that shown in Figure 4.8. The binned errors for the EE
spectrum assume an even coverage of 2000 deg2 and a detector time efficiency of 80%,
believed to be achievable with improved data selection algorithms. In this case the
focal plane sensitivity would be 34.2 µK

√
s, and the weight would be (1.7 µK)−2deg−2.

At this sensitivity the features of the E mode power spectrum start to appear, but
B modes below r = 0.1 are still inaccessible, even when the error is binned over the
entire peak of the BB spectrum, ` = 15− 250.
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Figure 4.10: Projected sensitivity of ABS after one year of observations on Field A.
As in Figure 4.9, a detector time efficiency of 80% is assumed as well as even coverage
over 2000 deg2. The array sensitivity is still 34.2 µK

√
s, and with the roughly 40-fold

increase in observation time the weight would increase to (0.27 µK)−2deg−2. At this
sensitivity the EE spectrum is clearly visible. The top and bottom figures are the
same except that the top displays the binned errors for r = 0.1 (blue boxes) and the
bottom for r = 0.03 (green boxes). If ABS can achieve a 80% detector time efficiency,
after one year of observation it will be able to detect approximately an r of 0.03.
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4.3 Maps

To make maps from the ABS data, we run the mapmaking code Ninkasi on the SciNET

General Purpose Cluster (GPC). Ninkasi was originally written (lead, Jonathan Siev-

ers) to map data from the Atacama Comology Telescope (ACT) [14, 18], and was

extended for use with ABS data by Jon Sievers and Mike Nolta. It makes unbi-

ased, maximum likelihood maps by finding the map of the sky that minimizes χ2 of

the bolometer data using a preconditioned conjugate-gradient method (PCG), with

a special focus on handling complicated correlated noises. The maps presented of

Field A are in a cylindrical equal-area (CEA) projection with a standard latitude of

δ = −43.7, the central declination of the patch, and with a pixel size of 5′, one seventh

of the beam FWHM. Figure 4.11 shows the preliminary maps after 1400 iterations of

mode removal with the current set of data cuts.
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Figure 4.11: Preliminary Q and U maps for Field A. The sky moves across the field
of view in the horizontal direction, and so the horizontal striping is likely due to a
ground pick-up profile.
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4.4 Current Status

ABS is currently in its second season of observation, which started on March 29.

Since that time, ABS has been observing for a total of 622 hours, approximately

30% calendar time. Of those, 343 hours were spent on Field A. The main causes of

down time this season so far have been severe weather conditions, and complications

due to the deployment of ACTpol currently underway, such as increased loading

on the generators. These complications are anticipated to be resolved very soon,

since ACTpol is on the brink of starting regular operation. Several changes were

implemented since the last season to make ABS operation more robust and reduce

down time due to maintenance, most notably the addition of a wooden wheel inserted

in the cable wrap to ease the strain on the pulse tube lines. The wheel was added

during the December 2012 down time, and as of July 11, 2013 when this was written

the pulse tube lines are still in good condition.

For this season, now that we have a better understanding the data from the

instrument, our primary goal is to observe Field A for as many hours as possible in

order to reach our projected sensitivity.
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Chapter 5

Addendum

The methods described in Chapter 4 represent a first pass at the data selection, and

the findings led to a number of improvements that were implemented by the team. We

now recover 218 hours during the reference period (92% of the observing time). This

leads to an improvement in the net sensitivity to 38 µK
√
s. The CES distributions

and time efficiencies associated with these cuts are shown in Figures 5.1 and 5.2.

The changes that most increased the percentage of data recovery and the effective

focal plane sensitivity were adjustments to the glitch finding algorithm (Sec. 4.1.1)

and the DC offset removal (Sec. 4.1.2). More specifically, the former involved a

subtraction of the median value of each 25 or 50 sample interval, rather than the

mean value, preventing a single large glitch from affecting the baseline average of an

entire interval. As seen in Figure 5.3, this change removes the artifact appearing as

regular peaks in Figure 4.6. The latter change involved moving the DC offset removal

step to after the timestream de-Butterworthing step. This had the greatest impact

on the kurtosis calculation for each timestream, bringing the average down to below

one, compared to ∼ 100 for the first iteration.
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Selection Criteria Sensitivity (µK
√
s)

Full array 30.6

HWP shape ratio to reference≥ 0.2 31.3
HWP shape ratio to reference ≤ 2.0 31.0

Raw stationarity ≤ 0.2 32.5
Raw skewness ≥ −0.3 30.9
Raw skewness ≤ 0.3 30.9

Raw kurtosis ≤ 5 31.6
No. 2 sample glitches ≤ 40 32.1

No. 10 sample glitches ≤ 200 31.5
Demodulated white noise amplitude ≥ 20 30.8
Demodulated white noise amplitude ≤ 100 30.9

χ2 above 1Hz ≤ 3 31.8
χ2 below 1Hz ≤ 4 32.2

Demodulated knee frequency≤ 0.02 34.5

All cuts 37.7

Table 5.1: Effective array sensitivity for the second pass at data cuts. There is a
∼ 25% improvement compared to the first pass.

The second pass at data selection has lead to a ∼ 25% improvement in the focal

plane sensitivity (Tab. 5.1). Related improvements to the algorithms and thresholds

will continue to be made over the following months.
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Figure 5.1: Distributions of CESes during Field A observations in the reference
period using the second iteration of the data processing algorithm. Compare to
Figure 4.3.
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Figure 5.2: Time efficiency of each detector for each cut individually, with the second
iteration of data selection criteria. A detector is represented by a square in the grid.
The cuts applied in each frame are indicated by the number(s) in square brackets in
the titles, and correspond to the cuts in Figure 5.1.
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Figure 5.3: Histograms of the number of glitches per constant elevation scan (CES),
zoomed in on the y-axis, similarly to Figure 4.6.
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